
Efficient Financial and Data Analytics
Continuum Analytics Europe GmbH

Yves Hilpisch
www.continuum.io www.wakari.io

Overview
Continuum Analytics Europe GmbH is a sub-
sidiary of Continuum Analytics, Inc., based in
Austin, Texas. Continuum focuses on Python

for Data Exploration & Visualization. Around
Python, Continuum is active mainly in four ar-
eas:

� Open Source projects: Continuum en-
gages in a number of Open Source projects,
ranging from a free Python distribution
(Anaconda) to big data array solutions
(Blaze)

� products: Continuum offers a number
of performance libraries (e.g. NumbaPro

for just-in-time CPU/GPU compiling) and
packaged solutions (like Anaconda Accel-

erate for high performance analytics and
Wakari for Web-based data analytics)

� consulting & development: we provide
a whole range of consulting & development
services around Python-based initiatives;
our experts have domain expertise, among
others, in industries like finance/banking,
bio technology, defence/military, engineer-
ing

� training: Continuum has a large pool
of Python talent and provides virtual as
well as on-site trainings with topics rang-
ing from general Python programming to
finance and scientific applications

Python for Analytics
Today’s analytics tasks demand for high per-
forming implementations of sometimes complex
algorithms. A fundamental analytics stack for
Python should include at least the following:

� IPython: interactive development

� NumPy: array operations

� SciPy: scientific computing

� matplotlib: 2d and 3d plotting

� pandas: time series and panel data

� Cython: C extensions for Python

� Numba: just-in-time compiling

� PyTables: hierarchical database

Continuum products provide two easy routes to
get a consistent Python-based data analytics in-
frastructure up and running:

� Anaconda: a free Python distribution pro-
viding easy and flexible install procedures
on your local machine or your server

� Wakari: this is a browser-based data an-
alytics & visualization environment (with
free accounts) which offers, among others,
Python shells, IPython Notebooks, com-
plete Python environments and functions
to collaborate and share

Wakari

Work Flow with Wakari
Suppose you have to implement a simulation al-
gorithm for the evolution of a stock price over
time. You also want to visualize some simulated
stock price paths. Afterwards, you want to share
your code and results with a colleague at your
company.
An optimized work flow with Wakari would look
like follows:

1. login: you log in to your Wakari account

2. Python: you have all libraries and tools
available for interactive, collaborative data
analytics

3. IPython: you open a new Notebook
which will contain your code and your re-
sults

4. code: you interactively write your code,
test, re-write and optimize it

5. documentation: IPython Notebook al-
lows you to easily include markup-based
documentation

6. results: you run your code to generate the
numerical and graphical results

7. publish: you can share your complete
Notebook via a simple click or convert it
to a PDF or a HTML5 presentation

Wakari is a tool that minimizes the time to an-
alytics insights through an optimized work flow.
Precious time of data analysts is saved and de-
cisions can be made more quickly.

Distributed Computing
With Wakari and IPython you can easily imple-
ment parallel execution of code. The solution is
fully scalable and you can flexibly add single or
multiple computing nodes to your environment.
With Blaze you will then be able to have disk-
based, distributed arrays over a whole cluster.

Performance Issues
For example, nested loops like the following are
quite slow in pure Python:

def f_py(n):

result = 0.0

for i in range(n):

for j in range(n * i):

result += sin(pi / 2)

return int(result)

One approach to speed-up code is to use highly
optimized libraries, such as NumPy. In this case,
memory issues would arise for large n. Another
one is to use just-in-time compiling with Numba.

import numba

f_nb = numba.autojit(f_py)

Just-in-time compiling leads to a speed-up of
1,800x and preserves minimal memory usage:

n = 1000

%time result = f_py(n)

Wall time: 19min 21s

%time result = f_nb(n)

Wall time: 629 ms

Using NumbaPro, pure Python can also be com-
piled and optimized for parallel execution on
multi-core CPUs as well as on GPUs.

Efficient I/O
To read and to write large sets of data is an
important analytics task. Python provides with
pandas and PyTables two libraries that are quite
efficient when it comes to I/O operations as well
as in-memory and out-of-memory analytics, re-
spectively. IOPro is another solution that helps
to improve the performance of typical I/O tasks.

Contact Information
If you have questions regarding our services or
our products, please contact Dr. Yves J. Hilpisch
under yves@continuum.io. You can also visit
our Web site www.continuum.io for more infor-
mation.

1


