
Continuum
Data Analytics

Stack
Pycon DE 2013, Köln

Yves Hilpisch
Continuum Analytics Europe GmbH

yves@continuum.io
@dyjh

mailto:pwang@continuum.io
mailto:pwang@continuum.io

Agenda

• Big Data and Python

• Architecting for Data

• Continuum’s Stack

Big Data and Python

Origin of “Big Data” Movement

• Storage disruption: plummeting HDD costs,
cloud-based storage

• also: I/O evolution: 10gE SANs, Flash drives

• ETL disruption: Hadoop/Hive/HBase

• Basic analytics & statistics: “counting things”

• Facebook, Twitter, Youtube, Instagram ...

Big Data (circa 2012)

http://techcrunch.com/2012/10/27/big-data-right-now-five-trendy-open-source-technologies/

http://techcrunch.com/2012/10/27/big-data-right-now-five-trendy-open-source-technologies/
http://techcrunch.com/2012/10/27/big-data-right-now-five-trendy-open-source-technologies/

The Players

• Data Processing & Low-level infrastructure

• Traditional BI vendors

• New BI startups

• Data-oriented startups

• Analytics-as-a-service

• “Big data” infrastructure platforms (DB &
analytical compute as a service)

Another perspective (2011)

• Diversification away from SQL & relational DBs
• “Messy” data, agile data processing
• Dynamic schema management
• Acknowledgement of heterogenous data environment

• Focus on high performance
• Richer simulations, processing more data
• Modern hardware revolution (SSDs, GPUs, etc.)

• Advanced visualization
• Interactive, novel plots
• Beyond simple reports and dashboards

• Advanced analytics
• Richer statistical models, Bayesian approaches
• Machine learning
• Predictive databases

Observed Trends

•big data: be it in terms of volume, complexity or
velocity, available data is growing drastically; new
technologies, an increasingly connected world, more
sophisticated data gathering techniques and devices as
well as new cultural attitudes towards social media are
among the drivers of this trend

•real-time economy: today, decisions have to be
made in real-time, business strategies are much shorter
lived and the need to cope faster with the ever
increasing amount and complexity of decision-relevant
data steadily increases

Summary Data Trends

“Our measurements as well as other recent work shows that the
majority of real-world analytic jobs process less than 100 GB of
input, but popular infrastructures such as Hadoop/MapReduce
were originally designed for petascale processing. We claim that a
single “scale-up” server can process each of these jobs and do as
well or better than a cluster in terms of performance, cost,
power, and server density.”

Raja Appuswamy et al. (2013): “Nobody Ever Got Fired for Buying a
Cluster.” Microsoft Research, Cambridge UK.

However, ...

Architecting for Data

Data Revolution

“Internet Revolution” True Believer, 1996:
Businesses that build network-oriented capability
into their core will fundamentally outcompete and
destroy their competition.

“Data Revolution” True Believer, 2010:
Businesses that build data comprehension into
their core will destroy their competition over the
next 5-10 years

Opportunities

• Advanced ML & Predictive DBs will provide
transformative insights to nearly every business.

• Mobile & hi-speed connectivity means more dimensions
of customer life are being digitized.
• Every bit of new data makes old data more valuable
• Analyzing historical data becomes more important

• Developing internal data analysis capability means you
can more easily build data products to sell downstream.
• This is becoming an industry unto itself.

Technical Challenges

• Hardware & software do not yet make data analysis
easy at terabyte scales

• Current analytics are mostly I/O bound. Next
generation “advanced” analytics will be compute bound
(simulations, distributed LinAlg). Efficiency matters.

• Reproducible analytical environment.

• Library & language choices can add “air gaps” between
domain expert and analytical infrastructure.

Business Challenges

• Data exploration is new discipline for most businesses.

• Balancing agility & process for data-oriented processes
and analytical libraries.

• Bad data architecture will generally not cause
catastrophic failures.

• Instead, will erode your ability to compete.

It’s hard to know when you are sucking.

Data Matters

• Data has mass.

• Scalability requires minimizing data-movement (only
as necessary).

• Deep/Advanced Analytics needs full computing
stack, as accessible as SQL and Excel.

• Data should only move when it has to (to
communicate results, to replicate, to back-up) not
because the technology doesn’t allow access.

Algorithms Matter

...a Mac Mini running GraphChi can
analyze Twitter’s social graph from 2010
—which contains 40 million users and 1.2
billion connections—in 59 minutes. “The
previous published result on this problem
took 400 minutes using a cluster of about
1,000 computers,” Guestrin says.

-- MIT Tech Review

“...Spark, running on a cluster of 50
machines (100 CPUs) runs five iterations
of Pagerank on the twitter-2010 in 486.6
seconds. GraphChi solves the same
problem in less than double of the time
(790 seconds), with only 2 CPUs.”

Berkeley Data Stack (BDAS)

Memory Matters

1980s 90s-00s 2010s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to
the CPU) are faster but have reduced
capacities and are best suited for per-
forming computations; higher-level
caches are slower but have higher ca-
pacity and are best suited for storage
purposes.

Figure 1 shows the evolution of
this hierarchical memory model over
time. The forthcoming (or should I
say the present?) hierarchical model
includes a minimum of six memory
levels. Taking advantage of such a
deep hierarchy isn’t trivial at all, and
programmers must grasp this fact
if they want their code to run at an
acceptable speed.

Techniques to Fight
Data Starvation
Unlike the good old days when the
processor was the main bottleneck,
memory organization has now be-
come the key factor in optimization.
Although learning assembly language
to get direct processor access is (rela-
tively) easy, understanding how the
hierarchical memory model works—
and adapting your data structures
accordingly—requires considerable
knowledge and experience. Until we
have languages that facilitate the de-
velopment of programs that are aware

of memory hierarchy (for an example
in progress, see the Sequoia project
at www.stanford.edu/group/sequoia),
programmers must learn how to
deal with this problem at a fairly low
level.4

There are some common techniques
to deal with the CPU data-starvation
problem in current hierarchical mem-
ory models. Most of them exploit the
principles of temporal and spatial
locality. In temporal locality, the target
dataset is reused several times over
a short period. The !rst time the
dataset is accessed, the system must
bring it to cache from slow memory;
the next time, however, the processor
will fetch it directly (and much more
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In
this case, circuits are designed to fetch
memory elements that are clumped
together much faster than if they’re
dispersed. In addition, specialized
circuitry (even in current commodity
hardware) offers prefetching—that is,
it can look at memory-access patterns
and predict when a certain chunk of
data will be used and start to trans-
fer it to cache before the CPU has
actually asked for it. The net result is
that the CPU can retrieve data much
faster when spatial locality is properly
used.

Programmers should exploit the op-
timizations inherent in temporal and
spatial locality as much as possible.
One generally useful technique that
leverages these principles is the block-
ing technique (see Figure 2). When
properly applied, the blocking tech-
nique guarantees that both spatial and
temporal localities are exploited for
maximum bene!t.

Although the blocking technique
is relatively simple in principle, it’s
less straightforward to implement
in practice. For example, should the
basic block !t in cache level one,
two, or three? Or would it be bet-
ter to !t it in main memory—which
can be useful when computing large,
disk-based datasets? Choosing from
among these different possibilities
is dif!cult, and there’s no substitute
for experimentation and empirical
analysis.

In general, it’s always wise to use
libraries that already leverage the
blocking technique (and others) for
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is
a virtual machine written in Python
and C that lets you evaluate poten-
tially complex arithmetic expressions
over arbitrarily large arrays. Using the
blocking technique in combination

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade:
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Speed
C

ap
ac

ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd 3 1/29/10 11:21:43 AM

Speed Matters

Jeff Hammerbacher’s Advice

• Instrument everything
• Put all your data in one place
• Data first, questions later
• Store first, structure later (often the data model is

dependent on the analysis you'd like to perform)
• Keep raw data forever
• Let everyone party on the data
• Introduce tools to support the whole research cycle

(think of the scope of the product as the entire cycle, not
just the container)

• Modular and composable infrastructure

Architecting for Data

Data exploration as the central task.

Data visualization as a first-class citizen.

Enable agility.

Continuum´s Stack

Domains
• Finance
• Geophysics
• Defense
• Advertising & Web Analytics
• Scientific Computing

Technologies
• Array/Columnar data processing
• Distributed computing, HPC
• GPU and new vector hardware
• Machine learning, predictive analytics
• Interactive Visualization

Enterprise

Python

Scientific

Computing

Data Processing

Data Analysis

Visualisation

Scalable

Computing

Continuum Analytics

To revolutionize data analytics and visualization by moving high-level
Python code and domain expertise closer to data. This vision rests on
four pillars:

• simplicity: advanced, powerful analytics, accessible to domain
experts and business users via a simplified programming paradigm

• interactivity: interactive analysis and visualization of massive data
sets

• collaboration: collaborative, shareable analysis (data, code,
results, graphics)

• scale: out-of-core, distributed data processing

Mission

Big Picture
Empower domain experts with

high-level tools that exploit modern
hardware

Array Oriented Computing

Projects

Blaze: High-performance Python library for modern
vector computing, distributed and streaming data

Numba: Vectorizing Python compiler for multicore
and GPU, using LLVM

Bokeh: Interactive, grammar-based visualization
system for large datasets

Common theme: High-level, expressive language for
domain experts; innovative compilers & runtimes
for efficient, powerful data transformation

Blaze Objectives
• Flexible descriptor for tabular and semi-structured data

• Seamless handling of:
• On-disk/Out-of-core
• Streaming data
• Distributed data

• Uniform treatment of:
• “arrays of structures” and

“structures of arrays”
• missing values
• “ragged” shapes
• categorical types
• computed columns

Blaze Status

• DataShape type grammar

• NumPy-compatible C++ calculation engine (DyND)

• Synthesis of array function kernels (via LLVM)

• Fast time series routines (dynamic time warping for
pattern matching)

• Array Server prototype

• BLZ columnar storage format

• 0.2 current release, working on 0.3 ...

Schematic

Database

 GPU Node

Array
Server

NFS

Array
Server

Array
Server

Blaze Client

Synthesized
Array/Table view

array+sql://

array://

file:// array://

Python REPL,
Scripts

Viz Data
Server

C, C++,
FORTRAN

JVM
languages

Kiva: Array Server
Data Shape + Raw JSON = Web Service

type KivaLoan = {
 id: int64;
 name: string;
 description: {
 languages: var, string(2);
 texts: json # map<string(2), string>;
 };
 status: string; # LoanStatusType;
 funded_amount: float64;
 basket_amount: json; # Option(float64);
 paid_amount: json; # Option(float64);
 image: {
 id: int64;
 template_id: int64;
 };
 video: json;
 activity: string;
 sector: string;
 use: string;
 delinquent: bool;
 location: {
 country_code: string(2);
 country: string;
 town: json; # Option(string);
 geo: {
 level: string; # GeoLevelType
 pairs: string; # latlong
 type: string; # GeoTypeType
 }
 };

{"id":200533,"name":"Miawand Group","description":{"languages":
["en"],"texts":{"en":"Ozer is a member of the Miawand Group. He lives in
the 16th district of Kabul, Afghanistan. He lives in a family of eight
members. He is single, but is a responsible boy who works hard and
supports the whole family. He is a carpenter and is busy working in his
shop seven days a week. He needs the loan to purchase wood and
needed carpentry tools such as tape measures, rulers and so on.\r\n \r
\nHe hopes to make progress through the loan and he is confident that
will make his repayments on time and will join for another loan cycle as
well. \r\n\r\n"}},"status":"paid","funded_amount":
925,"basket_amount":null,"paid_amount":925,"image":{"id":
539726,"template_id":
1},"video":null,"activity":"Carpentry","sector":"Construction","use":"He
wants to buy tools for his carpentry shop","delinquent":null,"location":
{"country_code":"AF","country":"Afghanistan","town":"Kabul
Afghanistan","geo":{"level":"country","pairs":"33
65","type":"point"}},"partner_id":
34,"posted_date":"2010-05-13T20:30:03Z","planned_expiration_date":
null,"loan_amount":
925,"currency_exchange_loss_amount":null,"borrowers":
[{"first_name":"Ozer","last_name":"","gender":"M","pictured":true},
{"first_name":"Rohaniy","last_name":"","gender":"M","pictured":true},
{"first_name":"Samem","last_name":"","gender":"M","pictured":true}],"ter
ms":
{"disbursal_date":"2010-05-13T07:00:00Z","disbursal_currency":"AFN","
disbursal_amount":42000,"loan_amount":925,"local_payments":
[{"due_date":"2010-06-13T07:00:00Z","amount":4200},
{"due_date":"2010-07-13T07:00:00Z","amount":4200},
{"due_date":"2010-08-13T07:00:00Z","amount":4200},
{"due_date":"2010-09-13T07:00:00Z","amount":4200},
{"due_date":"2010-10-13T07:00:00Z","amount":4200},
{"due_date":"2010-11-13T08:00:00Z","amount":4200},
{"due_date":"2010-12-13T08:00:00Z","amount":4200},
{"due_date":"2011-01-13T08:00:00Z","amount":4200},
{"due_date":"2011-02-13T08:00:00Z","amount":4200},
{"due_date":"2011-03-13T08:00:00Z","amount":
4200}],"scheduled_payments": ...

2.9gb of JSON => network-queryable array: ~5 minutes

Akamai Dataset ETL
Hive Python script

Hardware

Memory

Time
(traceroute)

Routes/hr/Ghz

8x 16 core, 2 GHz
(128 cores) 1x 8 core, 2.2 GHz

RAM: 8x 382 GB
HDD: 8x 15k rpm

RAM: 144 GB
HDD: 2x 7200rpm

5 hrs, 635M routes 11 hrs, 113M routes

496k 584k

• Python performs ~18% better with almost no optimization
• resulting IPMap can be used for realtime, online query and

aggregation

Querying Traceroute in BLZ format

1k Random1k Random Full ScanFull Scan

Time RAM Time RAM

BLZ (disk)

BLZ (mem)

NPY (memmap)

NumPy (mem)

3.5s 0.04mb 2.9s 8mb

2.37s 210mb 2.4s 210mb

0.24s 0.2mb 0.23s 602mb

.13s 603mb 0.23s 603mb

Meant for dealing with Big Data
(RAM consumption is extremely low)

Numba

• Just-in-time, dynamic compiler for Python

• Optimize data-parallel computations at call time,
to take advantage of local hardware configuration

• Compatible with NumPy, Blaze

• Leverage LLVM ecosystem:
• Optimization passes
• Inter-op with other languages
• Variety of backends (e.g. CUDA for GPU support)

Numba

LLVM IR

x86
C++

ARM

PTX

C

Fortran

Python

Numba turns Python into a “compiled language”

Example

Numba

LLVM-based architecture

Image Processing

@jit('void(f8[:,:],f8[:,:],f8[:,:])')
def filter(image, filt, output):
 M, N = image.shape
 m, n = filt.shape
 for i in range(m//2, M-m//2):
 for j in range(n//2, N-n//2):
 result = 0.0
 for k in range(m):
 for l in range(n):
 result += image[i+k-m//2,j+l-n//2]*filt[k, l]
 output[i,j] = result

~1500x speed-up

Example: Mandelbrot Vectorized
from numbapro import vectorize

sig = 'uint8(uint32, f4, f4, f4, f4, uint32, uint32,
uint32)'

@vectorize([sig], target='gpu')
def mandel(tid, min_x, max_x, min_y, max_y, width,
height, iters):
 pixel_size_x = (max_x - min_x) / width
 pixel_size_y = (max_y - min_y) / height

 x = tid % width
 y = tid / width

 real = min_x + x * pixel_size_x
 imag = min_y + y * pixel_size_y

 c = complex(real, imag)
 z = 0.0j

 for i in range(iters):
 z = z * z + c
 if (z.real * z.real + z.imag * z.imag) >= 4:
 return i
 return 255

Kind Time Speed-up

Python 263,6 1.0x

CPU 2,639 100x

GPU 0,1676 1573x

Tesla S2050

Example: N-Body Simulation

http://hilpisch.com/Continuum_N_Body_Simulation_Numba_27072013.html

• Simulation of movement of N bodies (space objects,
particles)

• Loop-heavy algorithm to calculate the interactions
between all bodies

• Pure Python 70 sec

• NumPy 0.718 sec (= 97x speed-up)

• Numba 0.105 sec (= 7x speed-up = 670 x total)

http://hilpisch.com/Continuum_N_Body_Simulation_Numba_27072013.html
http://hilpisch.com/Continuum_N_Body_Simulation_Numba_27072013.html

Bokeh
• Language-based (instead of GUI) visualization system

• High-level expressions of data binding, statistical transforms,
interactivity and linked data

• Easy to learn, but expressive depth for power users

• Interactive
• Data space configuration as well as data selection
• Specified from high-level language constructs

• Web as first class interface target

• Support for large datasets via intelligent downsampling
(“abstract rendering”)

Bokeh

Inspirations:
• Chaco: interactive, viz pipeline for large data
• Protovis & Stencil :

 Binding visual Glyphs to data and expressions
• ggplot2: faceting, statistical overlays

Design goal:
Accessible, extensible, interactive plotting for the web ...
... even for non-Javascript programmers

Bokeh & BokehJS Demos
• BokehJS demos

• Audio Spectrogram

• Bokeh Examples

- Low-level Python interface

- IPython Notebook
integration

- ggplot example

Abstract Rendering

Pixels'are'Bins…'
and'always'have'been'

1 2 2 3 4 4 3 2 2 1

A'

D'

B'

C'

B'
C'

D'
A'

Counts'

Z>View'
Geometry'

Pixels'

Hi-def Alpha

Kiva: Abstract Rendering
Basic Abstract Rendering can identify trouble spots in
standard plots, and also offer automatic tone mapping,
taking perception into account.

37 mil elements, showing adjacency between entities in Kiva dataset

Abstract Rendering

? ? ? ? ? ? ? ? ? ?

B#
C#

D#
A#

Aggregates#(“Abstract”#Pixels)#

Geometry#

Pixels#

Reduce#

Transfer#

Abstract Rendering of Sparsity

“Drawing the Dark” in Kiva Example

Akin to mapping the ocean trenches; typical viz starts at sea level & goes up.

www.wakari.io

• Cloud-hosted Python analytics environment
• Full Linux sandbox for every user
• IPython notebook
• Interactive Javascript plotting
• Easy to share notebooks & code with other users
• Free plan: 512mb memory, 10gb disk
• Premium plans include: more powerful machines,

more memory/disk, SSH access, cluster support

http://Wakari.io
http://Wakari.io

Data Summary Explorer

Continuum Data Explorer (CDX)

Continuum Analytics Europe GmbH
Rathausstrasse 75-79
66333 Voelklingen
Germany

www.continuum.io
europe@continuum.io

Dr. Yves J. Hilpisch | @dyjh

http://www.continuum.io
http://www.continuum.io
mailto:europe@continuum.io
mailto:europe@continuum.io
mailto:http://twitter.com/dyjh?subject=
mailto:http://twitter.com/dyjh?subject=

