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Big Data and Python



Origin of “Big Data” Movement

• Storage disruption: plummeting HDD costs, 
cloud-based storage

• also: I/O evolution: 10gE SANs, Flash drives

• ETL disruption: Hadoop/Hive/HBase

• Basic analytics & statistics:  “counting things”

• Facebook, Twitter, Youtube, Instagram ...



Big Data (circa 2012)



http://techcrunch.com/2012/10/27/big-data-right-now-five-trendy-open-source-technologies/

http://techcrunch.com/2012/10/27/big-data-right-now-five-trendy-open-source-technologies/
http://techcrunch.com/2012/10/27/big-data-right-now-five-trendy-open-source-technologies/


The Players

• Data Processing & Low-level infrastructure

• Traditional BI vendors

• New BI startups

• Data-oriented startups

• Analytics-as-a-service

• “Big data” infrastructure platforms (DB & 
analytical compute as a service)



Another perspective (2011)



• Diversification away from SQL & relational DBs 
• “Messy” data, agile data processing
• Dynamic schema management
• Acknowledgement of heterogenous data environment

• Focus on high performance
• Richer simulations, processing more data
• Modern hardware revolution (SSDs, GPUs, etc.)

• Advanced visualization
• Interactive, novel plots
• Beyond simple reports and dashboards

• Advanced analytics
• Richer statistical models, Bayesian approaches
• Machine learning
• Predictive databases

Observed Trends



•big data: be it in terms of volume, complexity or 
velocity, available data is growing drastically; new 
technologies, an increasingly connected world, more 
sophisticated data gathering techniques and devices as 
well as new cultural attitudes towards social media are 
among the drivers of this trend

•real-time economy: today, decisions have to be 
made in real-time, business strategies are much shorter 
lived and the need to cope faster with the ever 
increasing amount and complexity of decision-relevant 
data steadily increases

Summary Data Trends



“Our measurements as well as other recent work shows that the 
majority of real-world analytic jobs process less than 100 GB of 
input, but popular infrastructures such as Hadoop/MapReduce 
were originally designed for petascale processing. We claim that a 
single “scale-up” server can process each of these jobs and do as 
well or better than a cluster in terms of performance, cost, 
power, and server density.”

Raja Appuswamy et al. (2013): “Nobody Ever Got Fired for Buying a 
Cluster.” Microsoft Research, Cambridge UK.

However, ...



Architecting for Data



Data Revolution

“Internet Revolution” True Believer, 1996:
Businesses that build network-oriented capability 
into their core will fundamentally outcompete and 
destroy their competition.

“Data Revolution” True Believer, 2010:
Businesses that build data comprehension into 
their core will destroy their competition over the 
next 5-10 years



Opportunities

• Advanced ML & Predictive DBs will provide 
transformative insights to nearly every business. 

• Mobile & hi-speed connectivity means more dimensions 
of customer life are being digitized.
• Every bit of new data makes old data more valuable
• Analyzing historical data becomes more important

• Developing internal data analysis capability means you 
can more easily build data products to sell downstream.
• This is becoming an industry unto itself.



Technical Challenges

• Hardware & software do not yet make data analysis 
easy at terabyte scales 

• Current analytics are mostly I/O bound. Next 
generation “advanced” analytics will be compute bound 
(simulations, distributed LinAlg).  Efficiency matters.

• Reproducible analytical environment.

• Library & language choices can add “air gaps” between 
domain expert and analytical infrastructure.



Business Challenges

• Data exploration is new discipline for most businesses.

• Balancing agility & process for data-oriented processes 
and analytical libraries.

• Bad data architecture will generally not cause 
catastrophic failures.

• Instead, will erode your ability to compete.

It’s hard to know when you are sucking.



Data Matters

• Data has mass. 

• Scalability requires minimizing data-movement (only 
as necessary).  

• Deep/Advanced Analytics needs full computing 
stack, as accessible as SQL and Excel.

• Data should only move when it has to (to 
communicate results, to replicate, to back-up) not 
because the technology doesn’t allow access.



Algorithms Matter

...a Mac Mini running GraphChi can 
analyze Twitter’s social graph from 2010
—which contains 40 million users and 1.2 
billion connections—in 59 minutes. “The 
previous published result on this problem 
took 400 minutes using a cluster of about 
1,000 computers,” Guestrin says.

-- MIT Tech Review

“...Spark, running on a cluster of 50 
machines (100 CPUs) runs five iterations 
of Pagerank on the twitter-2010 in 486.6 
seconds. GraphChi solves the same 
problem in less than double of the time 
(790 seconds), with only 2 CPUs.”



Berkeley Data Stack (BDAS)



Memory Matters

1980s 90s-00s 2010s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to 
the CPU) are faster but have reduced 
capacities and are best suited for per-
forming computations; higher-level 
caches are slower but have higher ca-
pacity and are best suited for storage 
purposes.

Figure 1 shows the evolution of 
this hierarchical memory model over 
time. The forthcoming (or should I 
say the present?) hierarchical model 
includes a minimum of six memory 
levels. Taking advantage of such a 
deep hierarchy isn’t trivial at all, and 
programmers must grasp this fact 
if they want their code to run at an  
acceptable speed.

Techniques to Fight  
Data Starvation 
Unlike the good old days when the 
processor was the main bottleneck, 
memory organization has now be-
come the key factor in optimization. 
Although learning assembly language 
to get direct processor access is (rela-
tively) easy, understanding how the 
hierarchical memory model works—
and adapting your data structures 
accordingly—requires considerable 
knowledge and experience. Until we 
have languages that facilitate the de-
velopment of programs that are aware 

of memory hierarchy (for an example 
in progress, see the Sequoia project 
at www.stanford.edu/group/sequoia), 
programmers must learn how to 
deal with this problem at a fairly low 
level.4 

There are some common techniques 
to deal with the CPU data-starvation 
problem in current hierarchical mem-
ory models. Most of them exploit the 
principles of temporal and spatial  
locality. In temporal locality, the target 
dataset is reused several times over 
a short period. The !rst time the 
dataset is accessed, the system must 
bring it to cache from slow memory; 
the next time, however, the processor 
will fetch it directly (and much more 
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In 
this case, circuits are designed to fetch 
memory elements that are clumped 
together much faster than if they’re 
dispersed. In addition, specialized 
circuitry (even in current commodity 
hardware) offers prefetching—that is, 
it can look at memory-access patterns 
and predict when a certain chunk of 
data will be used and start to trans-
fer it to cache before the CPU has  
actually asked for it. The net result is 
that the CPU can retrieve data much 
faster when spatial locality is properly 
used.

Programmers should exploit the op-
timizations inherent in temporal and 
spatial locality as much as possible. 
One generally useful technique that 
leverages these principles is the block-
ing technique (see Figure 2). When 
properly applied, the blocking tech-
nique guarantees that both spatial and 
temporal localities are exploited for 
maximum bene!t.

Although the blocking technique 
is relatively simple in principle, it’s 
less straightforward to implement 
in practice. For example, should the 
basic block !t in cache level one, 
two, or three? Or would it be bet-
ter to !t it in main memory—which 
can be useful when computing large, 
disk-based datasets? Choosing from 
among these different possibilities 
is dif!cult, and there’s no substitute 
for experimentation and empirical 
analysis.

In general, it’s always wise to use 
libraries that already leverage the 
blocking technique (and others) for 
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is 
a virtual machine written in Python 
and C that lets you evaluate poten-
tially complex arithmetic expressions 
over arbitrarily large arrays. Using the 
blocking technique in combination 

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current 
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade: 
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.
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Speed Matters



Jeff Hammerbacher’s Advice

• Instrument everything
• Put all your data in one place
• Data first, questions later
• Store first, structure later (often the data model is 

dependent on the analysis you'd like to perform)
• Keep raw data forever
• Let everyone party on the data
• Introduce tools to support the whole research cycle 

(think of the scope of the product as the entire cycle, not 
just the container)

• Modular and composable infrastructure



Architecting for Data

Data exploration as the central task.

Data visualization as a first-class citizen.

Enable agility.



Continuum´s Stack



Domains
• Finance
• Geophysics
• Defense
• Advertising & Web Analytics
• Scientific Computing

Technologies
• Array/Columnar data processing
• Distributed computing, HPC
• GPU and new vector hardware
• Machine learning, predictive analytics
• Interactive Visualization

Enterprise

Python

Scientific

Computing

Data Processing

Data Analysis

Visualisation

Scalable

Computing

Continuum Analytics



To revolutionize data analytics and visualization by moving high-level 
Python code and domain expertise closer to data. This vision rests on 
four pillars:

• simplicity: advanced, powerful analytics, accessible to domain 
experts and business users via a simplified programming paradigm

• interactivity: interactive analysis and visualization of massive data 
sets 

• collaboration: collaborative, shareable analysis (data, code, 
results, graphics)

• scale: out-of-core, distributed data processing

Mission



Big Picture
Empower domain experts with 

high-level tools that exploit modern 
hardware

Array Oriented Computing



Projects

Blaze: High-performance Python library for modern 
vector computing, distributed and streaming data

Numba: Vectorizing Python compiler for multicore 
and GPU, using LLVM

Bokeh: Interactive, grammar-based visualization 
system for large datasets

Common theme: High-level, expressive language for 
domain experts; innovative compilers & runtimes 
for efficient, powerful data transformation



Blaze Objectives
• Flexible descriptor for tabular and semi-structured data

• Seamless handling of:
• On-disk/Out-of-core
• Streaming data
• Distributed data

• Uniform treatment of:
• “arrays of structures” and 

“structures of arrays”
• missing values
• “ragged” shapes
• categorical types
• computed columns



Blaze Status

• DataShape type grammar

• NumPy-compatible C++ calculation engine (DyND)

• Synthesis of array function kernels (via LLVM)

• Fast time series routines (dynamic time warping for 
pattern matching)

• Array Server prototype

• BLZ columnar storage format

• 0.2 current release, working on 0.3 ...



Schematic
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Kiva: Array Server
Data Shape  +      Raw JSON            =   Web Service 

type KivaLoan = {
    id: int64;
    name: string;
    description: {
        languages: var, string(2);
        texts: json # map<string(2), string>;
    };
    status: string; # LoanStatusType;
    funded_amount: float64;
    basket_amount: json; # Option(float64);
    paid_amount: json; # Option(float64);
    image: {
        id: int64;
        template_id: int64;
    };
    video: json;
    activity: string;
    sector: string;
    use: string;
    delinquent: bool;
    location: {
        country_code: string(2);
        country: string;
        town: json; # Option(string);
        geo: {
            level: string; # GeoLevelType
            pairs: string; # latlong
            type: string; # GeoTypeType
        }
    };
    ....

{"id":200533,"name":"Miawand Group","description":{"languages":
["en"],"texts":{"en":"Ozer is a member of the Miawand Group. He lives in 
the 16th district of Kabul, Afghanistan. He lives in a family of eight 
members. He is single, but is a responsible boy who works hard and 
supports the whole family. He is a carpenter and is busy working in his 
shop seven days a week. He needs the loan to purchase wood and 
needed carpentry tools such as tape measures, rulers and so on.\r\n \r
\nHe hopes to make progress through the loan and he is confident that 
will make his repayments on time and will join for another loan cycle as 
well. \r\n\r\n"}},"status":"paid","funded_amount":
925,"basket_amount":null,"paid_amount":925,"image":{"id":
539726,"template_id":
1},"video":null,"activity":"Carpentry","sector":"Construction","use":"He 
wants to buy tools for his carpentry shop","delinquent":null,"location":
{"country_code":"AF","country":"Afghanistan","town":"Kabul 
Afghanistan","geo":{"level":"country","pairs":"33 
65","type":"point"}},"partner_id":
34,"posted_date":"2010-05-13T20:30:03Z","planned_expiration_date":
null,"loan_amount":
925,"currency_exchange_loss_amount":null,"borrowers":
[{"first_name":"Ozer","last_name":"","gender":"M","pictured":true},
{"first_name":"Rohaniy","last_name":"","gender":"M","pictured":true},
{"first_name":"Samem","last_name":"","gender":"M","pictured":true}],"ter
ms":
{"disbursal_date":"2010-05-13T07:00:00Z","disbursal_currency":"AFN","
disbursal_amount":42000,"loan_amount":925,"local_payments":
[{"due_date":"2010-06-13T07:00:00Z","amount":4200},
{"due_date":"2010-07-13T07:00:00Z","amount":4200},
{"due_date":"2010-08-13T07:00:00Z","amount":4200},
{"due_date":"2010-09-13T07:00:00Z","amount":4200},
{"due_date":"2010-10-13T07:00:00Z","amount":4200},
{"due_date":"2010-11-13T08:00:00Z","amount":4200},
{"due_date":"2010-12-13T08:00:00Z","amount":4200},
{"due_date":"2011-01-13T08:00:00Z","amount":4200},
{"due_date":"2011-02-13T08:00:00Z","amount":4200},
{"due_date":"2011-03-13T08:00:00Z","amount":
4200}],"scheduled_payments": ...

2.9gb of JSON => network-queryable array: ~5 minutes



Akamai Dataset ETL
Hive Python script

Hardware

Memory

Time 
(traceroute)

Routes/hr/Ghz

8x 16 core, 2 GHz
(128 cores) 1x 8 core, 2.2 GHz

RAM: 8x 382 GB
HDD: 8x 15k rpm

RAM: 144 GB
HDD: 2x 7200rpm

5 hrs, 635M routes 11 hrs, 113M routes

496k 584k

• Python performs ~18% better with almost no optimization
• resulting IPMap can be used for realtime, online query and 

aggregation



Querying Traceroute in BLZ format

1k Random1k Random Full ScanFull Scan

Time RAM Time RAM

BLZ (disk)

BLZ (mem)

NPY (memmap)

NumPy (mem)

3.5s 0.04mb 2.9s 8mb

2.37s 210mb 2.4s 210mb

0.24s 0.2mb 0.23s 602mb

.13s 603mb 0.23s 603mb

Meant for dealing with Big Data
(RAM consumption is extremely low)



Numba

• Just-in-time, dynamic compiler for Python

• Optimize data-parallel computations at call time, 
to take advantage of local hardware configuration

• Compatible with NumPy, Blaze

• Leverage LLVM ecosystem:
• Optimization passes
• Inter-op with other languages
• Variety of backends (e.g. CUDA for GPU support)



Numba

LLVM IR

x86
C++

ARM

PTX

C

Fortran

Python

Numba turns Python into a “compiled language”



Example

Numba



LLVM-based architecture



Image Processing

@jit('void(f8[:,:],f8[:,:],f8[:,:])')
def filter(image, filt, output):
    M, N = image.shape
    m, n = filt.shape
    for i in range(m//2, M-m//2):
        for j in range(n//2, N-n//2):
            result = 0.0
            for k in range(m):
                for l in range(n):
                    result += image[i+k-m//2,j+l-n//2]*filt[k, l]
            output[i,j] = result

~1500x speed-up



Example:  Mandelbrot Vectorized
from numbapro import vectorize

sig = 'uint8(uint32, f4, f4, f4, f4, uint32, uint32, 
uint32)'

@vectorize([sig], target='gpu')
def mandel(tid, min_x, max_x, min_y, max_y, width, 
height, iters):
    pixel_size_x = (max_x - min_x) / width
    pixel_size_y = (max_y - min_y) / height

    x = tid % width
    y = tid / width

    real = min_x + x * pixel_size_x
    imag = min_y + y * pixel_size_y

    c = complex(real, imag)
    z = 0.0j

    for i in range(iters):
        z = z * z + c
        if (z.real * z.real + z.imag * z.imag) >= 4:
            return i
    return 255

Kind Time Speed-up

Python 263,6 1.0x

CPU 2,639 100x

GPU 0,1676 1573x

Tesla S2050



Example:  N-Body Simulation

http://hilpisch.com/Continuum_N_Body_Simulation_Numba_27072013.html

• Simulation of movement of N bodies (space objects, 
particles)

• Loop-heavy algorithm to calculate the interactions 
between all bodies

• Pure Python 70 sec

• NumPy 0.718 sec (= 97x speed-up)

• Numba 0.105 sec (= 7x speed-up = 670 x total)

http://hilpisch.com/Continuum_N_Body_Simulation_Numba_27072013.html
http://hilpisch.com/Continuum_N_Body_Simulation_Numba_27072013.html


Bokeh
• Language-based (instead of GUI) visualization system

• High-level expressions of data binding, statistical transforms, 
interactivity and linked data

• Easy to learn, but expressive depth for power users

• Interactive
• Data space configuration as well as data selection
• Specified from high-level language constructs

• Web as first class interface target

• Support for large datasets via intelligent downsampling 
(“abstract rendering”)



Bokeh

Inspirations:
• Chaco: interactive, viz pipeline for large data
• Protovis & Stencil : 

    Binding visual Glyphs to data and expressions
• ggplot2: faceting, statistical overlays

Design goal:
Accessible, extensible, interactive plotting for the web ...
... even for non-Javascript programmers



Bokeh & BokehJS Demos
• BokehJS demos

• Audio Spectrogram

• Bokeh Examples

- Low-level Python interface

- IPython Notebook 
integration

- ggplot example



Abstract Rendering

Pixels'are'Bins…'
and'always'have'been'

1 2 2 3 4 4 3 2 2 1

A'

D'

B'

C'

B'
C'

D'
A'

Counts'

Z>View'
Geometry'

Pixels'



Hi-def Alpha



Kiva:  Abstract Rendering
Basic Abstract Rendering can identify trouble spots in 
standard plots, and also offer automatic tone mapping, 
taking perception into account. 

37 mil elements, showing adjacency between entities in Kiva dataset



Abstract Rendering

? ? ? ? ? ? ? ? ? ?

B#
C#

D#
A#

Aggregates#(“Abstract”#Pixels)#

Geometry#

Pixels#

Reduce#

Transfer#



Abstract Rendering of Sparsity

“Drawing the Dark” in Kiva Example

Akin to mapping the ocean trenches; typical viz starts at sea level & goes up.



www.wakari.io

• Cloud-hosted Python analytics environment
• Full Linux sandbox for every user
• IPython notebook
• Interactive Javascript plotting
• Easy to share notebooks & code with other users
• Free plan: 512mb memory, 10gb disk
• Premium plans include: more powerful machines, 

more memory/disk, SSH access, cluster support

http://Wakari.io
http://Wakari.io




Data Summary Explorer



Continuum Data Explorer (CDX)
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