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Preface

Physics tells stories about change. Newtonian physics, in particular, gives a precise language
to describe how things move and why. This book aims to be rigorous where it matters and
friendly everywhere: figures first, formulas second, with short proofs or precise definitions when
they sharpen understanding.

How to Read

Skim a section for its figures and callouts to catch the idea. Then read the surrounding
narrative for intuition and the equations for precision. Each chapter starts with Learning
Objectives and a Symbols‑at‑a‑Glance box, and ends with a Summary, a short Where
We’re Heading Next, a Common Pitfalls callout, and a Try in 60 seconds mini‑checklist.
Use the guide below to choose how deep to go.

Guide for Readers
Pick a path that matches your goal and time.

Conceptual Tour (intuition first). Follow Parts I–VI for the story of motion, relying on
figures, analogies, and summaries. Skim the heavier ODE and numerical derivations (e.g.,
Chapter 2 Sections 2.4–2.5; Chapter 7 Section 7.5). Skip Part VII and treat the appendices
as optional reference, glancing at the glossary when a symbol or term is new.

Mathematical Deep Dive (rigor and computation). Read everything in Parts I–VII, in-
cluding the ODE structure and numerical preview in Chapter 2, the force‑to‑motion com-
ponent work in Chapter 7, and the modeling and simulation focus in Chapters 15 and 16.
Pair chapters with the math appendices: start with Appendices A–B (calculus, vectors),
use Appendix C for gradients/curl and the conservative field test ∇×F = 0 and F = −∇U ,
and lean on Appendices D–E for ODE stability, error scaling, and why symplectic Euler
behaves better on energy.

Style and Approach
We keep a light‑hearted tone while treating the math with respect. Figures and short callouts
lead the way; precise equations and compact proofs follow where they add clarity. We use the
International System of Units (SI), check dimensions as a habit, and favor analogies and worked
examples that tie the symbols back to everyday experience. Exercises mix quick conceptual
checks with approachable real‑world tasks.
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What This Book Covers
The book is self‑contained and spans the essentials of Newtonian mechanics—concepts, methods,
and a compact math appendix. Here is a preview so you can choose your path:

• Part I builds intuition and language: Chapter 1 frames the scope and scales; Chapter 2
develops graphs, vectors, calculus ideas, ODEs, and a numerical preview.

• Part II moves along a line: Chapter 3 ties slopes/areas to x(t), v(t), a(t); Chapter 4 links
forces to motion and introduces simple numerical updates.

• Part III adds dimensions: Chapter 5 develops vector kinematics; Chapter 6 applies the
toolkit to projectile and circular motion.

• Part IV unifies forces and energy: Chapter 7 (FBDs, components, friction/drag/ten-
sion) and Chapter 8 (work, kinetic energy, power) plus Chapter 9 (potential energy and
conservation).

• Part V treats many‑particle systems and rotation: Chapter 10 (COM, momentum, colli-
sions) and Chapter 11 (torque, rotational dynamics, energy, angular momentum).

• Part VI samples gravity, oscillations, and a taste of continua: Chapters 12 to 14.

• Part VII adds cross‑cutting methods: Chapter 15 (dimensions, scaling) and Chapter 16
(numerical time‑stepping and stability/accuracy intuition).

• Appendices collect just the math we actually use: calculus (definitions + visuals),
vectors/linear algebra, multivariable essentials (gradient/divergence/curl; line integrals),
ODEs (separable/linear; oscillations; slope fields), and numerics (Euler flavors; error/sta-
bility/energy checks).

Who This Book Is For
Learners with high‑school algebra/trigonometry who want a clear, visual path into mechanics;
engineers and technically minded professionals (including quantitative analysts, financial mod-
ellers, algorithmic traders, and researchers) who want a compact, simulation‑ready refresher
with reproducible figures; and autodidacts who prefer a friendly tone without sacrificing cor-
rectness.

Objectives
By the end, you should be able to model motion with clean diagrams and equations; choose be-
tween force‑ and energy‑based methods; reason about orders of magnitude; and make pragmatic
numerical predictions while checking accuracy and stability.



Notation and Conventions

We use the International System of Units (SI) throughout. Scalars appear in italic (e.g., m, t);
vectors in bold lower‑case (e.g., v,a); matrices and tensors in bold upper‑case (e.g., R). Unit
vectors carry hats (e.g., êx). Time derivatives use an overdot (e.g., ẋ), and generic derivatives
use prime when context is clear (f ′(x)).

Quick Reference

• Position: x (1D) or r = (x, y, z); velocity v = ẋ, v = ṙ; acceleration a = v̇, a = v̇.

• Force F or F ; mass m; weight W = mg; gravitational acceleration g ≈ 9.81m/s2

near Earth.

• Energy: kinetic K = 1
2mv2; potential U (context‑dependent); power P = F · v (see

Chapter 8).

• Products: dot a · b (alignment/projection); cross a × b (area/torque; right‑hand
rule).

• Matrices: a′ = Ra for rotations in 2D/3D (see Appendix B and Chapter 11).

Angles, Rotation, and Systems

• Angles θ are in radians unless stated; angular velocity ω = θ̇; angular acceleration
α = ω̇.

• Torque τ about a specified axis; moment of inertia I about that axis; rotational
energy Krot =

1
2Iω

2; angular momentum L = I ω (fixed axis).

• Momentum p = mv; center of mass R =
∑

miri/
∑

mi with M R̈ =
∑

Fext.

Dimensionless Numbers and Parameters

• Reynolds number Re =
ρvL

η
; Froude number Fr = v√

gL
(see Chapter 15).

• Coefficient of restitution e (1D collisions); damping ratio ζ and quality factor Q =
1/(2ζ) (Chapter 13).

• Gravitational parameter µ = GM ; specific energy ε = 1
2v

2 + Φ with Φ = −µ/r
(Chapter 12).

• Numerical step ∆t; tn = n∆t (Chapter 16 and appendix E).
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Operators and Fields

• Gradient ∇f points uphill; directional derivative Dûf = ∇f · û.

• Divergence ∇ · F measures sources/sinks; curl ∇ × F measures swirl (see Ap-
pendix C).

• Line integral along a path C:
∫
C F ·dr; conservative fields are gradients of potentials.

Dimensions and Units

Dimensional analysis is used routinely as a check:

[x] = L, [t] = T, [v] = L T−1, [a] = L T−2, [F ] = M L T−2.

We spell out acronyms on first use (e.g., International System of Units (SI)). Tables and
figures report units in brackets, e.g., x [m].
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Part I
Conceptual & Mathematical

Foundations

Part I Overview

This opening part builds intuition and language. Chapter 1 frames the scope of Newto-
nian mechanics with everyday examples, units, and the structure of theories. Chapter 2
develops the mathematical toolkit—functions and graphs, vectors, derivatives/integrals,
and ordinary differential equations (ODEs)—with visual and practical analogies.

1



Chapter 1
What Is Newtonian Physics?

Welcome to a rigorous yet light-hearted tour of classical mechanics. We will keep the math
honest, the plots neat, and the jokes strictly inertial.

Learning Objectives

After this chapter you should be able to describe what “classical” means in context,
recognize when Newtonian ideas apply, read our basic notation and units, and explain in
one paragraph how a physical theory connects states, laws, and solutions.

Symbols at a Glance

t time; x position; v = ẋ velocity; a = v̇ acceleration; m mass; F force; g ≈ 9.81m/s2

near Earth; energy K,U ; momentum p.

Analogy: Stories of Change

Physics tells stories about change. Each story has a cast (objects with mass), a script
(laws), and a timeline (initial conditions evolving in time). Reading and writing those
stories is the goal of this book.

At a Glance

Newtonian physics studies how physical systems evolve in time when governed by simple
laws. We emphasize clear mathematical structure, friendly figures, and practical intuition.

1.1 The Scope of Newtonian Mechanics
Classical mechanics applies when speeds are small compared to the speed of light and when
quantum effects can be neglected. It is the theory of everyday motion: bicycles and buses,
tennis balls and elevators. Prototypical models include point particles (e.g., a marble), rigid
bodies (e.g., a book or a door), and idealized continua (e.g., a uniform rod or a beam).

In practice, we choose a model that captures the essence of a question and ignores details
that do not matter at the scale of interest. A thrown ball, for example, can be treated as a
point mass for its flight, but as a rotating rigid body when spin matters.

2



CHAPTER 1. WHAT IS NEWTONIAN PHYSICS? 3

When Newtonian Ideas Break

Relativity matters when speeds approach the speed of light; quantum effects matter
when actions are comparable to Planck’s constant. Everyday motion on human scales
sits comfortably in the Newtonian regime. When in doubt, estimate: if a commuter train
travels at v ≈ 50m/s, then v/c ≈ 1.7× 10−7—firmly classical.

A Friendly Analogy
Think of mechanics like a recipe: the ingredients are states (positions and velocities), the in-
structions are the laws (forces), and the cake is the motion you observe after time evolves.

1.2 Basic Physical Quantities
We use position and time to describe motion, mass to measure inertia, and derived quantities like
velocity, acceleration, force, energy, momentum, and angular momentum to analyze behavior.
These quantities form a small vocabulary that we will reuse in many contexts.

Analogy: Casting a Movie

Think of a motion problem like casting a short movie. The actors are the objects (with
mass), the script is the force law, and the cinematography is the coordinate system you
choose to tell the story. The same scene can be filmed from different angles (coordinates);
the plot stays the same, but some shots make the action clearer.

Instant Snapshot vs. Flipbook

An ”instant” (state) is like a single photograph; a trajectory is like a flipbook. Newtonian
laws tell you how to go from one picture to the next. A good model lets you predict the
next frame so well that watching the flipbook feels inevitable.

A First Visualization: Constant Acceleration
As previewed in Figures 1.1 and 1.2, we sketch position and velocity under constant acceleration
(think of a car smoothly pressing the accelerator).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

0

10

20

t [s]

x
[m

]

Position x(t) = x0 + v0t+
1
2at

2

Figure 1.1: Position for constant acceleration a = 0.8m/s2, x0 = 0, v0 = 2m/s.
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−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

2

4

6

t [s]

v
[m

/s
]

Velocity v(t) = v0 + at

Figure 1.2: Velocity grows linearly with time under constant acceleration.

Worked Example: Elevator Ride

An elevator starts from rest, accelerates at 1.0m/s2 for 1.5 s, cruises at 1.5m/s for 2.0 s,
then decelerates at −1.0m/s2 for 1.5 s to a stop. The total displacement equals the area
under v(t): s = 1

2(1.5)(1.5) + (1.5)(2.0) + 1
2(1.5)(1.5) = 5.25m. Figure 1.3 sketches the

piecewise velocity and shades the area equal to displacement.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

area = s ≈ 5.25m

t [s]

v
[m

/s
]

Elevator ride: piecewise v(t) with area = displacement

Figure 1.3: Piecewise velocity for a short elevator ride; displacement equals the shaded area
under v(t).

1.3 Units, Dimensions, and Orders of Magnitude
We adopt the International System of Units (SI) throughout and routinely check dimensional
consistency. Typical scales for everyday objects are shown in Figure 1.4. Developing a sense
for scale helps you sanity-check results: if a car ”accelerates” at 50m/s2 for ten seconds, your
estimate should raise an eyebrow.
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apple

phone

soccer ball
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tim
e

[s]

Indicative mass–time scales (log–log)

Figure 1.4: Everyday mass and time scales span orders of magnitude.

One‑Line Estimate: Train vs. Light

At v = 50m/s, the ratio to light speed is v/c ≈ 1.7× 10−7—decisively non‑relativistic.

Quick Drop: Phone from Pocket

From h0 = 1.2m, the ideal fall time is T =
√
2h0/g ≈ 0.49 s and the impact speed

|v| ≈ gT ≈ 4.9m/s. Air drag is small over this height but does reduce speed slightly.

Dimensional Check

If s = 1
2at

2 describes displacement under constant acceleration, then [s] = L and [at2] =
L T−2 T2 = L—consistent.

1.4 The Structure of Physical Theories
Mechanics organizes knowledge as: states, laws, and solutions. A state summarizes what matters
now (positions and velocities). Laws tell how the state changes (forces produce acceleration).
With initial conditions, we compute a solution—a trajectory through time.

Theorem 1 (Determinism, Informal). For a well-posed system of ordinary differential equations
with smooth right-hand side, there exists a unique solution through each initial state for some
time interval.

In practice, most Newtonian models are initial‑value problems (IVPs): given (x(0), v(0))
and a force law F (x, v, t) that is smooth (or at least Lipschitz) in its arguments, the motion is
locally unique. When forces change discontinuously (e.g., impacts or switching friction regimes),
we treat those moments as events and restart the IVP with updated conditions.

Analogy: GPS Trail vs. Rubber Band

A GPS trail is a recorded trajectory; Newton’s laws act like a stretched rubber band that
pulls the state forward according to the forces—given the same start, you trace the same
path.
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1.5 Math vs. Physics in This Book
The main text favors intuition and application; short formal notes supply precise definitions
and statements when helpful. Use both: intuition to guide, and math to verify. When you feel
lost, scan the callouts and figures first, then read the surrounding text for the logic that binds
them.

Try in 60 seconds

Quick, confidence‑building tasks:

• Point at three objects and say whether Newtonian mechanics applies and why.

• Write one quantity with units from daily life (e.g., speed in m/s) and convert it.

• In one sentence, define “state, law, solution” for the falling‑ball story.

1.6 Exercises
Try a few light, insight‑building tasks.

1. Newtonian or not? For each scenario decide if Newtonian mechanics is appropriate and
justify in one sentence: a passenger jet at 900 km/h; an electron in a chip; a satellite in
low Earth orbit.

2. Back‑of‑the‑envelope. A commuter train at 50m/s: estimate v/c and comment on
whether relativistic effects matter. Repeat for a racing car at 100m/s.

3. Dimensional check. Which is dimensionally consistent for force: (a) F = mv, (b)
F = ma, (c) F = ma2? Explain using unit symbols.

4. Practical: Elevator ride. Time a start–stop elevator segment with your phone. Sketch
a rough v(t) based on sound/feel; mark where acceleration is positive/negative.

5. Practical: Everyday scales. List three objects (fruit, backpack, bicycle) and guess
their masses and typical timescales for an action (falling, lifting, rolling). Place your
guesses on a hand‑drawn log–log mass–time plot similar to Figure 1.4.

1.7 Summary and Review
Quick checklist of what you should now recognize:

• The Newtonian regime and when it breaks (relativity/quantum).

• Core quantities: position, velocity, acceleration, force, energy, momentum.

• Dimensional analysis as a guardrail for sanity checks.

• The structure state + laws + initial data ⇒ solution.

• Figures as arguments: slope ↔ velocity; area ↔ accumulation (preview).
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1.8 Where We’re Heading Next
In Chapter 2 we develop the mathematical language behind the pictures: functions and their
graphs, vectors, derivatives and integrals, and ordinary differential equations. This vocabulary
lets us turn words like “speeding up” into equations we can analyze and, later, solve.

Common Pitfalls

Short reminders:

• Mixing units (e.g., km/h with m/s) without converting.

• Forgetting to define a clear system, axis, and positive direction.

• Reading values instead of slopes when interpreting change.

Try in 60 seconds

Tiny tasks:

• Convert 36 km/h to m/s.

• Declare a positive direction and state it aloud on a quick sketch.

• Point to a graph and say what the slope means physically.



Chapter 2
Mathematical Language of Newtonian
Physics

This chapter builds the math we use throughout the book—functions, vectors, derivatives,
integrals, and ordinary differential equations (ODEs). We keep it intuitive and visual, with
analogies and small figures to anchor each idea. The goal is not symbol-pushing for its own
sake, but a compact language that makes motion problems easy to set up and reason about. If
you are new to some concepts, do not worry: each one will be motivated by a physical picture
first and formalized second.

Learning Objectives

By the end, you can read a position–time graph for slope and area, compute basic vector
operations, take simple derivatives and integrals in motion contexts, and recognize an
ODE and how a step‑by‑step method approximates its solution.

Symbols at a Glance

Quick legend for this chapter:

• r(t) position vector; v = ṙ velocity; a = v̇ acceleration

• x(t), v(t) scalars for 1D examples; t time

• · dot product; × cross product (3D)

Analogy: Motion Toolkit

Think of this chapter as a compact toolkit: graphs for seeing change, arrows (vectors) for
direction and size, calculus for turning slopes into rates and areas into totals, and ODEs
for encoding “laws cause change.”

Roadmap

We move from graphs of motion (Figures 2.1 and 2.2) to vectors and their operations
(Figure 2.4), then to differentiation/integration as change and accumulation (Figure 2.5).
Finally, we preview ODEs and a simple numerical scheme via a schematic comparison
(Figure 2.7).

8
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2.1 Functions and Graphs
Functions are rules that take an input and produce an output. In mechanics, the most common
function is a trajectory x(t): position as a function of time. When the function is smooth, the
graph carries two built-in “tools”: the slope of the curve (velocity) and how fast that slope
changes (acceleration). Reading a graph is thus a mechanical skill: eyes for slope, eyes for area,
eyes for curvature.

Analogy: Storyline

A function is a storyline. Time t indexes the pages; the value (e.g., x) tells you where the
character is on each page. A steady slope is a calm walk; a changing slope is a sprint or
a sudden stop.

As shown in Figure 2.1, a smooth x(t) lets us talk about slopes (instantaneous velocity)
and curvature (how acceleration feels). The corresponding velocity function v(t) appears in
Figure 2.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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4

tangent

t [s]

x
[m

]

x(t) with a tangent (slope = v)

Figure 2.1: A position–time graph with a tangent: the slope gives instantaneous velocity.
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v(t) as the derivative of x(t)

Figure 2.2: Velocity v(t) is the derivative (slope) of x(t).
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Worked Example: River Crossing

A boat heads due east at vboat = 2.0m/s across a river with current vcurrent = 1.0m/s due
north. The ground‑frame velocity is the vector sum with magnitude |v| =

√
2.02 + 1.02 ≈

2.24m/s at angle θ = tan−1(1/2) ≈ 26.6◦ north of east. Figure 2.3 draws the component
arrows and the resultant in the ground frame.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.5

1

1.5

2.0

1.0
|v|

θ ≈ 26.6◦

vx [m/s]

v y
[m

/s
]

River crossing: ground‑frame velocity = sum

Figure 2.3: Velocity components add head‑to‑tail; the current deflects the boat downstream.

2.2 Vectors in 2D and 3D
Vectors capture magnitude and direction. In two dimensions we write r = (x, y); in three, r =
(x, y, z). Unit vectors î, ĵ, k̂ point along the coordinate axes and let us decompose motion into
simple, independent pieces. A good habit: sketch arrows, label their components, and check that
magnitudes and directions make sense before computing. The dot product encodes alignment
(a · b = ‖a‖ ‖b‖ cos θ); in 3D the cross product captures oriented area (‖a× b‖ = ‖a‖ ‖b‖ sin θ,
right‑hand rule for direction). Checking units after vector operations is as important as in scalar
algebra.

Analogy: Shopping List + Arrows

Components (x, y) are like a two-item shopping list—“east” and “north” steps that add
up to the full trip. The arrow picture is the map view of the same list. The dot product
measures how much two trips agree, while the cross product (in 3D) measures the area
your trips would sweep out together.

Figure 2.4 shows vector addition via the parallelogram rule and highlights the dot product
angle.
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x

y

a

b

a+ b

θ

Figure 2.4: Vector addition via the parallelogram rule; angle θ appears in the dot product
a · b = ‖a‖ ‖b‖ cos θ.

2.3 Differentiation and Integration of Motion
Differentiation measures instantaneous change; integration measures accumulated effect. If
velocity is the rate at which position changes, then position is the accumulated effect of velocity.
The two are inverse operations when everything is smooth. When motion is piecewise smooth
(e.g., sudden braking), the graph still tells the story: slopes change abruptly, and areas still add
up.

Analogy: Speedometer and Odometer

The derivative is your speedometer (instant reading); the integral is your odometer (total
distance).

Suppose acceleration is a square pulse in time. As previewed in Figure 2.5, the area under
a(t) adds to velocity v(t). This is the graphical way to remember the fundamental theorem of
calculus in a mechanics setting.

0 1 2 3 4 5 6 7 8
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area = ∆v

t [s]
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l.
a
(t
)

[m
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2 ]

Area under a(t) grows v(t)

Figure 2.5: Acceleration as a pulse: the shaded area equals the increase in velocity.
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Worked Example: Braking Distance

A car slows uniformly from 25m/s to 0 in 4.0 s. The velocity graph is a straight line, and
the stopping distance equals the triangular area: s = 1

2 (25)(4.0) = 50m. The constant
acceleration is a = ∆v/∆t = −6.25m/s2. Figure 2.6 shows the linear v(t) and shaded
area.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

s = 50m

t [s]

v
[m

/s
]

Uniform braking: area under v(t) equals stopping distance

Figure 2.6: Linear v(t) during braking; the shaded triangle’s area is the stopping distance.

Integral in Practice: Flow Total

A faucet runs with rate q(t) = 0.4+0.1 sin(πt/5) L/s over 0 ≤ t ≤ 10 s. The total volume
is V =

∫ 10
0 q(t) dt = 4.0L (the sine contributes zero over a full period).

2.4 Ordinary Differential Equations in Mechanics
An ordinary differential equation (ODE) relates a function to its derivatives. In mechanics,
Newton’s second law mẍ = F (x, ẋ, t) is an ODE for motion in one dimension. An initial value
problem (IVP) specifies x(0) and ẋ(0) and asks for the future.

Analogy: Recipe + First Bite

The ODE is the recipe; the IVP adds the first bite (initial state) so you know exactly
how the taste evolves.

For constant acceleration a, the IVP solution is x(t) = x0 + v0t+
1
2at

2 and v(t) = v0 + at—
consistent with Figure 2.2. When forces depend on position or velocity, the ODE encodes
feedback (e.g., drag slows you more when you go faster).

2.5 Numerical Approximation of Motion (Preview)
When we cannot solve an ODE exactly, we approximate it over small time steps. The Euler
method updates

vn+1 = vn + a(tn, xn, vn)∆t,

xn+1 = xn + vn∆t.

As illustrated schematically in Figure 2.7, the numerical path follows the exact curve in small
forward steps. Smaller steps improve accuracy but cost time; too-large steps can wander off
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the true solution. Later we will compare simple schemes to better ones and discuss stability
(numerical solutions that behave physically even for larger steps).

One Euler Step: Linear Drag

For v̇ = g − (c/m) v with g = 9.81m/s2 and c/m = 0.60 s−1, take v0 = 0 and ∆t = 0.2 s.
One forward step gives v1 ≈ v0 + ∆t [g − (c/m)v0] = 1.962m/s. Smaller ∆t tracks the
curve better.

t

x

exact

Euler (schematic)

Figure 2.7: Analytic curve (smooth) versus forward Euler steps (staircase). The staircase
advances in small forward steps along the time axis, approximating the smooth motion.

2.6 Snell’s Law from Least Time (Lifeguard Analogy)
A lifeguard runs faster on sand than in water and wants to reach a swimmer as fast as possible.
The fastest path is not a straight line—it bends at the shoreline so that

sin θ1
v1

=
sin θ2
v2

,

where v1 and v2 are speeds on sand and in water, and angles are measured from the normal.
Defining a refractive index proportional to 1/v recovers Snell’s law n1 sin θ1 = n2 sin θ2.

Before Figure 2.8, picture two straight segments meeting the shoreline at one point; we
optimize that meeting point to minimize total time. The derivative step mirrors those in
Appendix A.

shorelinesand v1

water v2

normal

θ1

θ2

start

target

Figure 2.8: Fastest two‑segment path across media with speeds v1 (sand) and v2 (water). Equal-
izing sin θ

v
across the boundary minimizes time and yields Snell’s law.
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One‑Line Derivation

Let the shoreline point be x along the beach, with distances d1(x) on sand and d2(x)

in water. Time T (x) = d1(x)/v1 + d2(x)/v2. Setting T ′(x) = 0 gives sin θ1
v1

=
sin θ2
v2

.
Replace 1/v by refractive index n to obtain n1 sin θ1 = n2 sin θ2. See Appendix A for the
derivative idea.

2.7 Exercises
Short, friendly tasks to practice the math language.

1. Read a graph. For x(t) = 1 + 0.5t + 0.1t2, compute v(t) and a(t). At t = 2, estimate
the slope from a sketch and compare with the formula.

2. Vector playground. Take a = (2, 1) and b = (1, 2). Compute a+b, a ·b, and the angle
θ between them. Sketch the parallelogram as in Figure 2.4.

3. Practical: Two‑axis walk. Walk 20 steps east, then 15 steps north. Mark your start
and end on graph paper. Measure the displacement vector and its magnitude.

4. Area and change. Suppose a(t) = 0 except a = 2m/s2 from t = 1 to t = 3. If v(0) = 0,
what is v(4)? Use area under a(t) as in Figure 2.5.

5. One Euler step. For free fall without air ẍ = −g, take g = 9.8, ∆t = 0.2, x0 = 0, v0 = 0.
Do two Euler updates by hand and compare x(0.4) with the exact 1

2gt
2.

2.8 Summary and Review
Checklist of ideas and tools:

• Functions and their graphs encode motion; slopes and areas have direct physical meaning.

• Vectors represent magnitude and direction; addition and dot product capture geometry
and work.

• Differentiation measures change; integration accumulates effects.

• Newtonian motion fits naturally as ODEs with initial data.

• Simple numerical methods (Euler) approximate motion step by step.

2.9 Where We’re Heading Next
In Chapter 3 we specialize to one‑dimensional kinematics. We will relate x(t), v(t), and a(t)
in detail, master constant‑acceleration motion, and interpret slopes/areas on data‑like plots—
building on the language you developed here.

Common Pitfalls

Avoid these slips:

• Confusing slope (rate) with value when reading graphs.

• Dropping vector arrows and mixing magnitudes with components.

• Forgetting that areas under v(t) give displacement (signed), not always distance.



CHAPTER 2. MATHEMATICAL LANGUAGE OF NEWTONIAN PHYSICS 15

Try in 60 seconds

Tiny wins to cement the language:

• Sketch any increasing function and draw a tangent; label its slope.

• Add two arrows head‑to‑tail and name the parallelogram.

• Take one forward Euler step for x′ = 2 with x(0) = 0 and ∆t = 0.3.



Part II
One-Dimensional Motion

Part II Overview

This part makes the toolkit move along a line. Chapter 3 studies position, velocity,
and acceleration in one dimension using slope/area reasoning and constant‑acceleration
models. Chapter 4 introduces forces in 1D, connects them with Newton’s laws, and uses
simple numerical updates to compare predictions with analytic motion.

16



Chapter 3
Kinematics in One Dimension

Motion along a straight line is the laboratory where we learn to read graphs and translate
between position x(t), velocity v(t), and acceleration a(t). We emphasize pictures, consistent
sign conventions, and short formulas that say exactly what the pictures say. Our aim is fluency:
seeing a graph and immediately knowing what its slope means physically; seeing a formula and
picturing its curve.

Learning Objectives

You will interpret x(t), v(t), and a(t) graphs, carry out constant‑acceleration calculations,
and tell coherent “slope/area stories” for everyday 1D motion.

Symbols at a Glance

Quick legend used throughout this chapter:

• x(t) position along a line; ∆x displacement between two times

• v(t) = ẋ(t) velocity (slope of x); a(t) = v̇(t) acceleration (slope of v)

• t time; areas under v(t) give displacement

Analogy: One Track, Three Cameras

Think of a toy car on a straight track. Three synchronized cameras watch the same action:
the x-camera records position, the v-camera records the slope of x(t), and the a-camera
records how the slope itself changes. Reading kinematics is learning to jump between
these feeds.

3.1 Position, Displacement, Velocity, Acceleration
Choose a coordinate axis, a positive direction, and a reference point x = 0. Displacement
is change in position ∆x = x2 − x1 (a signed quantity), whereas distance traveled is always
non‑negative. Average velocity is ∆x/∆t; instantaneous velocity is the slope v(t) = ẋ(t). Accel-
eration is the slope of velocity, a(t) = v̇(t) = ẍ(t). A handy mental model is the car dashboard:
the trip counter estimates average velocity over an interval; the speedometer reads the instan-
taneous velocity; how ”hard” you feel pressed into the seat hints at acceleration.

17
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Sign Convention

Choose a positive direction and stick to it. With that fixed, a negative velocity means
moving opposite that direction; a negative acceleration means the velocity is decreasing
in that direction.

In Figures 3.1 to 3.3 we show a consistent triplet: a simple motion with steadily increasing
velocity (constant acceleration).
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0

5

10

15

20

t [s]

x
[m

]

Position x(t)

Figure 3.1: A sample position curve with constant acceleration.
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Velocity v(t) = ẋ(t)

Figure 3.2: Velocity grows linearly when acceleration is constant.
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Figure 3.3: Constant acceleration as a horizontal line.

3.2 Graphical Kinematics
When you face a graph, ask two questions: “What is the slope here?” and “What is the area
between these times?” Slope translates to an instantaneous rate (e.g., velocity from x(t)), and
area translates to an accumulated effect (e.g., displacement from v(t)). Remember that areas
under v(t) are signed: if v dips below zero, the negative area reduces the net displacement. Two
conversions matter most:

• Slope of x(t) ⇒ v(t); slope of v(t) ⇒ a(t).

• Area under v(t) between t1 and t2 ⇒ displacement
∫ t2
t1

v(t) dt.

As previewed in Figure 3.4, the shaded area under a linearly increasing velocity gives the change
in position. Picture laying down thin rectangular tiles under the curve between t1 and t2—their
combined area equals the displacement.
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Displacement as area under v(t)

Figure 3.4: Area under v(t) between two times equals displacement.

3.3 Uniform and Non‑Uniform Motion
Uniform motion has constant velocity (a = 0); non‑uniform motion has a 6= 0. In uniform
motion, x(t) is a straight line; in uniformly accelerated motion, v(t) is a straight line. For
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constant acceleration a, the classic relations are

v(t) = v0 + at, x(t) = x0 + v0t+
1
2at

2, v2 = v20 + 2a(x− x0).

Each is a compact way to say what the graphs already show in Figures 3.1 to 3.3.

3.4 Real‑World Examples
Consider a car that accelerates smoothly from rest, cruises, then brakes to a stop. The v(t)
sketch looks like a hill: up, flat, down. The displacement is the total area under that hill. If
your daily commute has two such hills (stop‑and‑go), the day’s distance is the sum of the two
areas. A moving walkway and your walking speed add linearly in v(t)—a nice reminder that
the graph is a physical story.

Worked Example: 0–10 m Sprint

A sprinter starts from rest, accelerates at a = 4.0m/s2 up to v = 8.0m/s, then holds that
speed. The distance to 10m is the area under v(t). During acceleration: s1 = 1

2at
2
1 with

t1 =
v
a = 2.0 s, so s1 = 8.0m. The remaining 2.0m at 8.0m/s takes t2 = 0.25 s. Thus the

10m time is T = t1 + t2 = 2.25 s. Figure 3.5 shows the piecewise v(t) with the area to
t = T shaded.
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Piecewise sprint velocity to 10 m

Figure 3.5: A simple sprint model: accelerate linearly to 8m/s, then hold speed until the 10m
area is reached.

3.5 Exercises
Practice translating words to graphs and graphs to formulas.

1. Slope and area. From the line v(t) = 3 + 0.5t, find x(t) with x(0) = 0. Mark the area
on a sketch for t ∈ [0, 4] and compare with your formula.

2. Units and signs. A jogger runs west and slows down: v is negative and a is positive/neg-
ative? Explain.

3. Constant acceleration. With a = const, derive v2 = v20 + 2a(x− x0) from v dv = a dx.

4. Practical: Escalator timing. Time a ride up an escalator while walking. Sketch v(t)
for “stand” versus “walk” and compare areas (displacements).
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5. Practical: Bike start/stop. From rest, pedal to cruising speed, then brake gently.
Have a friend film a wheel marker and estimate v(t) from frame spacing; identify where
a(t) changes sign.

3.6 Summary and Review
A quick checklist of ideas to keep on one page:

• x(t), v(t), a(t) form a triangle of ideas: slopes go down the chain, areas climb up.

• Constant acceleration yields straight v(t) and parabolic x(t).

• Displacement is area under v(t); sign conventions make predictions consistent.

3.7 Where We’re Heading Next
In Chapter 4 we introduce forces and Newton’s laws in one dimension, connect F = ma to the
v(t) and x(t) stories from this chapter, and compare analytic solutions with simple numerical
updates.

Common Pitfalls

Quick cautions:

• Reading heights instead of slopes when interpreting x(t) and v(t).

• Mixing displacement (signed) with distance (always positive).

• Switching sign conventions mid‑problem.

Try in 60 seconds

Fast checks:

• Draw any v(t) that makes x(t) stay constant.

• Sketch a v(t) that would make x(t) concave up.

• Read the area under a triangular v(t) between two times.



Chapter 4
Dynamics in One Dimension

In Chapter 3 we learned to read motion; now we learn to cause it. Dynamics links pushes and
pulls (forces) to changes in motion (accelerations) via Newton’s laws. In one dimension the
story is crisp: pick an axis, assign signs, add forces along that axis, then use Fnet = ma to
connect to v(t) and x(t).

Learning Objectives

You will draw clean free‑body diagrams, write down Fnet = ma with signs, predict qual-
itative v(t) and x(t) shapes from forces, and perform a first numerical step for a simple
1D model.

Symbols at a Glance

We use m mass, F force, a acceleration, v velocity, x position, c drag coefficient, k spring
constant, g gravitational acceleration.

Forces Explain Changes

Kinematics tells you what the motion looks like; dynamics tells you why it changes. A
constant velocity needs no force; a change in velocity betrays a nonzero net force.

4.1 Newton’s Laws in 1D
Read the laws with your sign convention in mind and keep everything along your chosen axis:

• First law (inertia): if Fnet = 0, then v is constant (including the case v = 0).

• Second law: Fnet = ma with a = v̇ = ẍ; signs follow your axis choice.

• Third law: forces between interacting bodies come in equal‑and‑opposite pairs. These act
on different bodies, so they never cancel within a single free‑body diagram.

We keep track of signs with a consistent axis. If “to the right” is positive, then a leftward push
is a negative force. A simple mental check: if the net force arrow points right, acceleration
should be positive.

Sign Convention

Pick an axis and declare its positive direction at the start of a problem. All forces and
accelerations are signed according to that choice—no switching mid‑stream.

22
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Analogy: Budget of Pushes

Think of forces like a budget: positive forces are income, negative forces are expenses. The
“net force” is your balance; acceleration is how quickly your “motion account” changes.

4.2 Mass and Common Forces
Mass measures inertia (resistance to changes in motion). Typical 1D force components include
weight W = mg (downward), normal forces from surfaces, friction (static/kinetic), and simple
driving forces. In 1D problems we often project a multi‑D situation onto an axis along the
motion. A compact way to organize thinking is the free‑body diagram: isolate the object and
draw all forces with signs according to your axis. A minimal example appears in Figure 4.1.

N

mg

Ff

Figure 4.1: Free‑body diagram for a block on a horizontal surface with push F and kinetic
friction f = µkN opposing the motion.

4.3 Basic 1D Force Models
Three simple models already cover many situations; each makes a different prediction for how
velocity should evolve:

• Constant force F = F0 gives a = F0/m and reproduces the constant‑acceleration results
from Chapter 3.

• Linear drag F = −cv opposes motion; with a constant drive it produces an exponential
approach to a terminal speed vterm = F0/c with time constant τ = m/c.

• Hooke spring F = −k(x− x∗) pulls toward an equilibrium point x∗ (undamped motion is
simple harmonic; see Chapter 13).

4.4 From Force to Motion
Once Fnet(x, v, t) is specified, Newton’s law mẍ = Fnet is an ODE. Sometimes we can solve it
exactly; often we can only solve or visualize it approximately. As a case study, Figure 4.2 shows
a constant drive opposed by linear drag: the velocity rises quickly at first and then flattens
toward a terminal value.
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Constant drive with linear drag: mv̇ = F0 − cv

Figure 4.2: Analytic velocity curve (navy) approaching a terminal speed under linear drag, with
a few forward Euler markers (red) for illustration. Discussed in Section 4.4.

Worked Example: Coffee Filter Terminal Speed

A lightweight coffee filter falls through air. A simple model is mv̇ = mg − cv (linear
drag). Define the terminal speed vT = mg

c and the time constant τ = m
c . For m = 1.5 g

and c = 0.015 kg/s one finds vT ≈ 0.98m/s and τ ≈ 0.10 s. Starting from rest,

v(t) = vT
(
1− e−t/τ

)
.

Figure 4.3 plots v(t) approaching vT and marks t = τ (about 63% of vT ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

t = 0.10

vT

t [s]

v
[m

/s
]

Coffee filter: v(t) = vT (1− e−t/0.10) with vT ≈ 0.98m/s, 0.10 ≈ 0.10 s

Figure 4.3: Approach to terminal speed under linear drag. After one time constant τ , the speed
is about 0.63 vT .
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4.5 Numerical Integration in 1D
For mẍ = F (x, ẋ, t), one forward Euler step of size ∆t reads

vn+1 = vn + 1
mF (xn, vn, tn)∆t,

xn+1 = xn + vn∆t.

Smaller steps improve accuracy; dimensionless groupings (e.g., c∆t/m in linear drag) help judge
stability. A simple pseudocode template is: choose x0, v0, then loop updates for n = 0, 1, 2, . . .
with your force model.

4.6 Everyday 1D Dynamics
Many familiar motions are effectively one‑dimensional after projection onto an axis. Start with
a sentence describing the situation, then sketch the forces and predict v(t) qualitatively before
computing.

• Car on a straight road in light traffic: engine push roughly constant at first, air drag
increases with speed; v(t) rises toward a plateau (terminal speed).

• Sliding box on a shallow incline: component of weight competes with kinetic friction; if
the component wins, v(t) grows linearly; if they match, motion steadies.

• Braking to a stop: roughly constant braking force gives a constant negative acceleration;
v(t) is a straight line sloping down to zero and x(t) a concave‑down parabola.

4.7 Exercises
Practice going from a free‑body diagram to equations of motion, and from force models to
qualitative v(t) and x(t) shapes.

1. Sign conventions. A cart is pushed left with 3N while friction exerts 1N to the right.
If right is positive, write Fnet and the acceleration for m = 1 kg.

2. Free‑body sketch. Draw a free‑body diagram for a block on a rough horizontal surface
pushed to the right; label N , mg, F , and kinetic friction f .

3. Linear drag. For mv̇ = F0 − cv, show that v(t) = F0
c (1− e−ct/m) for v(0) = 0.

4. Practical: Pull test. Gently pull a small object across a table with a rubber band.
Note the start (overcoming static friction) versus the sliding (kinetic friction). Sketch the
implied F versus t.

5. One Euler step. With mẍ = F0−cẋ, take m = 1, F0 = 2, c = 0.5, ∆t = 0.2, v0 = x0 = 0.
Compute v1, x1, v2, x2.

4.8 Summary and Review
A quick checklist before moving on:

• Newton’s three laws specialize cleanly in 1D with signed forces along an axis.

• Common models: constant force, linear drag, and springs already describe many systems.

• From Fnet to motion: solve mẍ = F analytically when possible, numerically when needed.
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4.9 Where We’re Heading Next
In Chapter 5 we lift the same ideas into the plane and space, building free‑body diagrams and
trajectories that use the vector language introduced in Chapter 2.

Common Pitfalls

Short reminders:

• Missing or inconsistent sign conventions on axes and forces.

• Using static friction where sliding occurs (or vice versa).

• Forgetting that normal forces adjust to constraints and are not always mg cos θ.

Try in 60 seconds

Micro‑tasks:

• Draw a free‑body diagram for a pulled sled and label signs along your axis.

• Write Fnet = ma for “engine push minus drag”.

• Do one Euler step for mv̇ = F0 − cv with m = 1, F0 = 2, c = 0.5, v0 = 0, ∆t = 0.2.



Part III
Two- and Three-Dimensional Motion

Part III Overview

We now move from lines to planes and space. Chapter 5 develops vector kinematics:
representing position, velocity, and acceleration as vectors; projecting motion onto axes;
and reading parametric curves with tangent and normal information. Chapter 6 applies
these ideas to projectiles and circular motion, building visual intuition for trajectories
and centripetal effects.
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Chapter 5
Vectors and Kinematics in 2D/3D

In one dimension, arrows could hide; in two and three dimensions, arrows are the language. This
chapter develops vector kinematics: we describe position with r(t), velocity with v(t) = ṙ(t),
and acceleration with a(t) = v̇(t). We keep the narrative visual—sketches first, formulas second.
By the end, you should be able to sketch a path, draw tangents and normals confidently, and
move between components and geometry with ease.

Learning Objectives

You will represent motion with vectors, project and recombine components, read tangen-
t/normal information from a curve, and connect dot products to alignment and work.

Symbols at a Glance

Quick legend: r position, v velocity, a acceleration, t̂ tangent unit, n̂ inward normal
unit.

Analogy: Map + Breadcrumbs

Imagine a drone leaving breadcrumbs along its path. The vector r(t) is the map pin at
time t. The velocity v(t) is the arrow on the breadcrumb showing direction and speed.
The acceleration a(t) is the way that arrow itself turns and lengthens.

5.1 Vector Representation of Motion
We write r(t) = (x(t), y(t)) in the plane or (x(t), y(t), z(t)) in space. Unit vectors î, ĵ, k̂ point
along the coordinate axes. Differentiation and integration act componentwise, so everything
you learned in Chapter 2 carries over with arrows on top.

Two immediate “vector calculus” facts are worth keeping on a sticky note:

• Speed is the magnitude of velocity: v = ‖v‖ = ‖ṙ‖. The unit tangent is t̂ = v/‖v‖.

• Arc length s satisfies ds
dt = v. Using d

dt = ds
dt

d
ds = v d

ds makes tangent/normal formulas
compact.

As shown in Figure 5.1, a parametric curve with a few velocity arrows already tells a story:
the red arrows hug the path and tilt as the slope changes. The length of each arrow represents
speed; their directions give the tangent.
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x

y

Figure 5.1: A 2D path (navy) with a few tangent velocity arrows (red) indicating direction of
motion.

Before we state the reflection rule, it helps to see how any incoming direction at a surface
splits into a component parallel to the surface and one along the normal. The geometric split
in Figure 5.2 is the picture we will reuse when we derive the vector reflection law in Figure 5.5.

mirror

n̂

ŝ∥

(ŝin ·n̂) n̂

ŝin

Figure 5.2: Vector decomposition at the mirror: the incoming direction splits into a part parallel
to the surface and a part along the normal; reflection flips only the normal part.

Worked Example: Straight Across the River

A canoe can make vboat = 2.0m/s relative to still water. The river current is vcurrent =
0.50m/s to the east. To land directly opposite (no downstream drift), steer a little west
of north so the boat’s horizontal component cancels the current: vboat sinϕ = 0.50. Thus
ϕ = sin−1(0.50/2.0) ≈ 14.5◦. The ground‑frame velocity then points straight north with
magnitude

√
2.02 − 0.502 ≈ 1.94m/s. Figure 5.3 shows the component arrows.
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Aim to cancel current: heading west of north

Figure 5.3: Choose a heading so the boat’s westward component cancels the eastward current.
The ground‑frame velocity points straight north.

5.2 Components, Projection, and Geometry
Vectors project naturally onto axes. The dot product a · b = ‖a‖ ‖b‖ cos θ measures alignment;
in mechanics it yields work: W =

∫
F ·dr. The cross product (in 3D) encodes perpendicularity

and areas; it will reappear for angular momentum and torque.

Analogy: Two Narrators

Describing motion with components is like having two narrators—one for east–west, one
for north–south. Each tells a simple story; together they tell the whole plot.

To make components concrete, Figure 5.4 shows a vector with its x- and y-projections.
Reading this picture is a skill: eyes move horizontally and vertically to match lengths with
components before any computation.

x

y

r

x

y

Figure 5.4: A vector r with dashed projections on the coordinate axes.

5.3 Reflection as a Vector Rule
Mirrors are a perfect vector application. At a flat surface with unit normal n̂, an incoming unit
direction ŝin reflects to

ŝout = ŝin − 2 (ŝin · n̂) n̂

This formula says “flip the normal component.” It encodes the law of reflection (angle in equals
angle out) without trigonometry.
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Before Figure 5.5, note how the equal angles are measured from the normal.

mirror

n̂

in

out

θi θr

Figure 5.5: Specular reflection: equal angles from the normal; vectors make the rule ŝout =
ŝin − 2(ŝin · n̂)n̂.

Mini Proof

Decompose the incoming direction into parts parallel/perpendicular to the surface: ŝin =
ŝ∥ + (ŝin · n̂) n̂. Reflection flips only the normal part, so ŝout = ŝ∥ − (ŝin · n̂) n̂, which
simplifies to the boxed formula above.

5.4 Straight-Line and Curvilinear Motion
For straight motion at constant direction, v is constant in direction and a is parallel (speeding
up) or antiparallel (slowing down). Curvilinear motion bends the path: v points along the
tangent; a generally has a tangent part (changing speed) and a normal part (turning). At
constant speed, acceleration is purely normal and points inward.

As illustrated in Figure 5.6, the normal component indicates how sharply we turn. Quanti-
tatively,

a = v̇︸︷︷︸
at

t̂ + v2 κ︸︷︷︸
an

n̂, κ =
∥∥∥dt̂

ds

∥∥∥ .
Here at = v̇ changes speed and an = v2κ bends the path. For a circle of radius R, the curvature
κ = 1/R so an = v2/R—the centripetal acceleration used in Chapter 6.

v

normal part of a

Figure 5.6: At a point on a curve, velocity is tangent; acceleration can have a normal component
pointing inward (turning) even at constant speed.

5.5 Examples
Let’s connect the pictures to daily motion. Each item hints at r(t), v(t), and a(t) without
equations first, encouraging a sketch‑then‑compute workflow:

• A pedestrian turns a corner at nearly constant speed—‖v‖ is steady but a points toward
the center of the turn.

• A drone flies north while rising: x(t) and y(t) evolve independently; the path is a tilted
line in 3D.

• A robot traces a parametric curve: r(t) = (t, sin t); the tangent arrows flip as the sine
wave crests and troughs.
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5.6 Exercises
Practice translating between pictures, components, and geometric statements.

1. Components. For r(t) = (2t, t2), compute v and a. At t = 1, sketch the tangent.

2. Dot product. For a = (2, 1) and b = (1, 3), compute a · b and the angle between them.

3. Practical: Corner turn. Walk at steady speed and turn a corner; note the inward
“pull”. Sketch v and the inward normal direction.

4. Parametric reading. For r(t) = (t, sin t), mark where v is horizontal or vertical.

5. Area/work preview. A constant force F = (1, 0) moves a point along r(t) = (t, t2).
Compute

∫ 1
0 F · dr.

5.7 Summary and Review
A quick checklist before moving on:

• Vector kinematics: r, v = ṙ, a = v̇; components evolve independently.

• Tangent/normal picture: v tangent; a can turn you even at constant speed.

• Dot product measures alignment and powers work; projections simplify problems.

5.8 Where We’re Heading Next
In Chapter 6 we apply vector kinematics to parabolic trajectories without air and to unifor-
m/non‑uniform circular motion with centripetal acceleration and geometric decompositions.
The tangent/normal picture from Figure 5.6 will become your compass.

Common Pitfalls

Quick reminders:

• Adding vector magnitudes instead of components; project first.

• Forgetting that v is tangent and a can be normal even at constant speed.

• Mixing degrees and radians in parametric angles.

Try in 60 seconds

Quick practice:

• Draw a random curve and sketch t̂ and n̂ at one point.

• Add two 2D arrows and estimate the angle between them by eye, then compute via
dot product.

• Project a vector onto the x‑axis and check that lengths match.



Chapter 6
Projectiles and Circular Motion

This chapter applies vector kinematics to two iconic trajectories: parabolas (projectiles without
air) and circles (uniform and non‑uniform circular motion). We connect algebraic formulas
to clean geometric pictures and keep the tangent/normal viewpoint from Chapter 5 front and
center. Our strategy is Galileo’s: split motion into independent directions, solve the easy parts,
and then recombine.

Learning Objectives

You will derive and interpret projectile trajectories, read uniform circular motion param-
eters, and decompose acceleration into tangent and normal parts for non‑uniform turns.

Symbols at a Glance

v0 launch speed, α launch angle, g gravitational acceleration, R radius, ω angular speed,
t̂ tangent unit, n̂ inward normal unit.

Analogy: Two Classics

Projectiles are the “throw and arc” stories; circular motion is the “turn and whirl” story.
In both, the red velocity arrows kiss the path (tangent), and inward acceleration keeps
the shape honest.

6.1 Projectile Motion Without Air
Resolve the initial velocity v0 into components: v0x = v0 cosα, v0y = v0 sinα. With x horizontal
and y vertical, the equations are

x(t) = x0 + v0x t,

y(t) = y0 + v0y t− 1
2gt

2, g > 0.

Eliminating t gives a parabola. The time of flight (for y0 = 0) is T = 2v0 sinα
g ; the range is

R =
v20 sin 2α

g . Two independent “clocks” are running: a steady horizontal clock x(t) = x0 + v0xt

and a vertical clock slowed by gravity y(t) = y0 + v0yt− 1
2gt

2.
For level launch and landing (y0 = 0), the range is maximized at α = 45◦ (no air). If launch

and landing heights differ, the optimal angle shifts; independence of horizontal and vertical
motion holds only when air resistance is neglected and gravity is uniform.
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Independent Clocks

Think of the projectile as walking east with a steady pace (horizontal component) while
riding an elevator up and then down (vertical component). The two stories are indepen-
dent, and the combined motion is the diagonal arc you see.

As illustrated in Figure 6.1, different launch angles trace a family of parabolas; complemen-
tary angles share the same range.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

20◦

35◦
50◦

x [m]

y
[m

]

Projectile trajectories for different launch angles

Figure 6.1: Projectile trajectories for three launch angles with the same initial speed v0. Com-
plementary angles (e.g., 35◦ and 55◦) have equal range.

Worked Example: Free Kick

Kick a ball at v0 = 25m/s and α = 30◦ from ground level. Neglecting air, the flight
time is T = 2v0 sinα

g ≈ 2 (25 sin 30◦)/9.81 ≈ 2.55 s. The range is R =
v20 sin 2α

g ≈

(252 sin 60◦)/9.81 ≈ 55.3m. The apex height hmax =
v20 sin2 α

2g ≈ 8.0m. Figure 6.2 shows
the arc with markers at the apex and landing.
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y
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]
Free kick at v0 = 25m/s, α = 30◦

Figure 6.2: Projectile path for the free‑kick parameters. Dots mark the apex and landing point.

6.2 Uniform Circular Motion
Parametrize a circle of radius R by r(t) =

(
R cos(ωt), R sin(ωt)

)
. Then

v(t) = ṙ(t) = ωR
(
− sinωt, cosωt

)
, a(t) = v̇(t) = −ω2R

(
cosωt, sinωt

)
= −ω2r(t).

The acceleration points inward (centripetal) with magnitude a = ω2R = v2/R. Use radians for
ω and any calculus with angles. At constant speed, the compass (direction) turns even while
the speedometer reading stays fixed—acceleration measures turning, not only speeding up.

Before Figure 6.3, note that velocity is tangent and acceleration is inward at every point.
A tight rope swing or a car on a roundabout are everyday versions of the same geometry:
something must pull inward to bend the path.

v

a

x

y

Figure 6.3: Uniform circular motion: velocity is tangent; acceleration points inward (cen-
tripetal).
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Worked Example: Ferris Wheel

A seat on a Ferris wheel of radius R = 12m completes one revolution in T = 8.0 s.
Then ω = 2π/T ≈ 0.785 rad/s, speed v = ωR ≈ 9.42m/s, and centripetal acceleration
an = v2/R ≈ 7.4m/s2. At the top and bottom the acceleration is vertical (downward at
top, upward at bottom). Figure 6.4 shows v (tangent) and a (inward) at both points.

v

v

a

a

x

y R = 12m, T = 8.0 s, an ≈ 7.4m/s2

Figure 6.4: Ferris wheel kinematics: tangent velocity and inward (centripetal) acceleration at
the top and bottom.

6.3 Non‑Uniform Circular Motion
When speed changes along a curve, acceleration splits into tangent and normal parts,

a = at t̂+
v2

R
n̂, at = v̇,

where t̂ is the unit tangent and n̂ points inward. As previewed in Figure 6.5, pressing the
accelerator while turning adds a forward (tangent) component to the always‑inward normal
part.

Local Runway

At any point the road looks straight for a tiny patch. We set up a local runway with a
forward axis t̂ and an inward axis n̂. The velocity lies along the runway; the acceleration
splits into a forward part (change of speed) and an inward part (change of direction).

v

at t̂v2

R
n̂

Figure 6.5: Decomposition of acceleration into tangent and normal components at a point on a
curve: velocity v is tangent; at t̂ changes speed; (v2/R) n̂ bends the path inward.
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6.4 Exercises
Practice reading vector motion in the plane and circle.

1. Parabola checks. For v0 = 20m/s and α = 30◦, compute T , R, and the maximum
height; compare with the curve in Figure 6.1.

2. Complementary angles. Show that sin 2α is unchanged by α 7→ 90◦ − α; interpret the
equal‑range property.

3. Uniform circle. For R = 2m and ω = 1.5 rad/s, compute v and a; mark the vectors on
a sketch like Figure 6.3.

4. Practical: Hose arc. Observe a water stream from a garden hose (low speed, calm day).
Sketch the curve and mark where the vertical component of velocity changes sign.

5. Practical: Cornering. On a bike at steady speed, ride a gentle arc; identify the inward
“pull” as the normal component of a.

6.5 Summary and Review
A quick checklist before moving on:

• Projectiles: split into components, solve, and recombine; parabolas and range emerge
cleanly.

• Uniform circles: v is tangent; a is inward with magnitude v2/R.

• Non‑uniform turning: decompose acceleration into tangent and normal parts.

6.6 Where We’re Heading Next
In Chapter 7 we blend vector kinematics with force models to analyze motion in two and three
dimensions—free‑body diagrams in 2D, constraints like tension and normal forces, and energy
methods as an alternative lens.

Common Pitfalls

Quick cautions:

• Treating the speed v as zero at the projectile apex (only vy = 0 there).

• Ignoring component independence—horizontal and vertical evolve separately with-
out coupling forces.

• Mixing degrees with radians in trigonometric functions.

Try in 60 seconds

Speed drills:

• Write x(t), y(t) for a projectile with v0 and α.

• On a circle, draw v and inward a at one point.

• Split an arbitrary a into tangent and normal directions on a crude sketch.



Part IV
Forces, Work, and Energy

Part IV Overview

Forces meet vectors in multiple dimensions. Chapter 7 develops free‑body diagrams
in 2D, resolves vector laws into components, and models friction, drag, and tension.
Chapter 8 then introduces work, kinetic energy, and power as complementary tools that
often simplify multi‑step force problems. Chapter 9 completes the part with potential
energy and energy conservation, using energy diagrams to read turning points and speeds
at a glance.
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Chapter 7
Forces in Multiple Dimensions

We now combine Newton’s laws with vectors. In two dimensions the recipe is clear: isolate
the object, draw a free‑body diagram (FBD), write the vector balance

∑
F = ma, and then

resolve into axes that make the geometry simple.

Learning Objectives

By the end, you will draw clean 2D FBDs, choose helpful axes, resolve forces into com-
ponents, and write the pair of equations that come from

∑
Fx = max and

∑
Fy = may.

Symbols at a Glance

F force, a acceleration, m mass, t̂ axis tangent to a surface, n̂ axis normal to a surface,
N normal force, W = mg weight, f friction, T tension.

Analogy: Shadows and Balances

Imagine each force arrow casting a shadow on your chosen axes. The component equations
simply say: the right‑minus‑left shadow balances to max, and the up‑minus‑down shadow
balances to may. Choose axes so the important shadows fall cleanly.

7.1 Newton’s Laws in Vector Form
We keep the vector law in sight and then read its “shadows” on the axes we choose. The second
law reads ∑

F = ma (vectors).

Pick axes and project: ∑
Fx = max,

∑
Fy = may.

The art is choosing axes aligned with the geometry—on an incline, take one axis along the
surface (Figure 7.1). With a good choice, one component often vanishes (e.g., no acceleration
into a rigid surface).

7.2 Free‑Body Diagrams in 2D
An FBD strips the world down to just the object and the forces on it. Draw arrows from the
object’s center pointing in the directions of the forces, label magnitudes, and note your axis
choice. A neat diagram saves algebra. Figure 7.1 shows a block on an incline with the usual
suspects.
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t̂

n̂

W = mg

N

f

Figure 7.1: Free‑body diagram on an incline: axes chosen along tangent t̂ and normal n̂; forces
are weight W , normal N , and friction f (kinetic shown opposing motion).

7.3 Resolving Components
Choose axes along the surface t̂ (take the downhill direction as positive) and perpendicular to it
n̂ (pointing outward from the surface). In these axes, the weight W splits cleanly: a component
of magnitude W sin θ lies along +t̂ (downhill) and a component of magnitude W cos θ points
into the surface (opposite +n̂). The angle θ is the incline angle. The faint gray arrows in
Figure 7.2 indicate the chosen axes.

t̂

n̂

W

W sin θ

W cos θ

θ

Figure 7.2: Resolving weight on an incline with axes shown faint gray: W sin θ along +t̂ (down-
hill) and W cos θ into the surface (opposite +n̂).

7.4 Friction and Drag
Static friction adjusts to whatever is needed to prevent relative motion up to a limit:

|fs| ≤ µsN, with fs = µsN at incipient slip.

Once sliding, kinetic friction has nearly fixed magnitude fk = µkN opposing motion. Linear
drag models air/fluid resistance at low speeds as Fdrag = −cv; direction opposes v and c
lumps density/shape factors (see Chapters 14 and 15). Start every problem by deciding: static
(sticking), kinetic (sliding), or a low‑speed drag model.

Analogy: Grip vs. Slide

Static friction is a grippy shoe matching whatever gentle push you give up to a limit;
kinetic friction is the steady resistance once you’re sliding.

Constraint forces round‑out the toolkit: the normal force enforces no‑penetration, and ideal
tension acts along a string/rope. In the common idealization of massless strings and frictionless
pulleys, the tension has the same magnitude throughout a connected segment.
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7.5 From Vector Law to Equations
Goal: turn a picture into two clean equations you can solve. The approach is always the same:
decide on axes, write the vector law, project onto axes, and use any constraint equations (like
the no–lift‑off condition) to eliminate unknown forces.

A reliable four‑step recipe (use it every time):

1. Draw a neat FBD and choose axes that match the geometry (e.g., along and normal to a
surface).

2. Write the vector law
∑

F = ma with a sentence about the positive directions.

3. Project onto axes to get
∑

Ft = mat and
∑

Fn = man (or x/y in a standard frame).

4. Use constraints (e.g., an = 0 with no lift‑off, f = µkN when sliding) to eliminate unknowns,
then solve for the desired quantity (at, v(t), or x(t)).

For the incline with kinetic friction (f = µkN) and angle θ measured from horizontal,
choosing t̂ downhill and n̂ outward gives

t̂ : mat = W sin θ − f,

n̂ : 0 = N −W cos θ (no lift‑off).

Eliminate N using the normal equation; then at = g sin θ − µkg cos θ. From here, constant at
lets you reuse the kinematics of Chapter 3 for v(t) and x(t) along the slope.

Worked Example: Sliding Down an Incline

Start from the free‑body picture along the slope. With axes t̂ (down the surface) and n̂
(out of the surface), Newton’s second law along t̂ reads

mat = mg sin θ − f, f = µkN, N = mg cos θ,

so the constant downhill acceleration is

at = g
(

sin θ − µk cos θ
)
.

The motion threshold occurs when at = 0, i.e. tan θc = µk. For µk = 0.25, θc ≈ 14.0◦ and
at(20

◦) ≈ 1.05m/s2. From rest over s = 5.0m, v =
√
2ats ≈ 3.24m/s. Figure 7.3 shows

the FBD; the caption states at(θ) and the threshold condition.

t̂

n̂

mg

N

f = µkN
mg sin θ

θ

Figure 7.3: Free‑body diagram on an incline with axes along/normal to the surface; friction
opposes motion. The downhill acceleration is at(θ) = g(sin θ − µk cos θ); motion starts when
at > 0, i.e. θ > θc = tan−1 µk (for µk = 0.25, θc ≈ 14◦).
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7.6 Exercises
Quick practice with FBDs and components.

1. Axes choice. For a block on an incline, draw t̂, n̂, and all forces. Label signs.

2. Resolve weight. Show that the downhill component is W sin θ and the into‑surface
component is W cos θ.

3. Static or kinetic? A block rests on an incline and you increase the angle slowly. Describe
what friction does before and after it starts sliding.

4. Practical: Door push. Push a door near the hinge and then near the handle with
the same effort. Describe the difference in motion; sketch the force directions (torque
preview).

5. Drag direction. For a puck moving east over a thin oil film, draw v and Fdrag.

7.7 Summary and Review
A quick checklist before moving on:

• Vector law
∑

F = ma becomes two component equations once axes are chosen.

• FBDs isolate forces; axes aligned with geometry simplify algebra.

• Friction and drag oppose motion; normal forces constrain; tension pulls along strings.

7.8 Where We’re Heading Next
In Chapter 8 we’ll solve problems by tracking energy transfer—often shorter and more insightful
than summing forces step by step.

Common Pitfalls

Quick cautions:

• Mixing axis components when projecting
∑

F = ma; treat t/n (or x/y) separately.

• Assuming friction always equals µN—static friction adjusts up to a limit.

• Forgetting that normal forces enforce constraints and may vary with situation.

Try in 60 seconds

Tiny drills:

• Draw an FBD for a hanging mass with a side pull; mark components.

• Write
∑

Fx = max,
∑

Fy = may for the incline case and solve for at.

• Point at any moving object around you and say which forces act and in what
directions.



Chapter 8
Work, Kinetic Energy, and Power

Energy is a second viewpoint on motion that often turns multi‑step force calculations into one
line. When forces are tricky but you can track start and finish, energy methods shine.

Learning Objectives

You will compute work from force and displacement (including as an area), use the work–
kinetic energy theorem to relate forces to speed, and interpret power as the rate at which
work is done.

Symbols at a Glance

W work (joules), K = 1
2mv2 kinetic energy, P power, F force, dr displacement element,

Ft component of F along the displacement.

Analogy: Battery and Faucet

Think of kinetic energy as a battery level. Doing positive work charges it; negative work
drains it. Power is the faucet setting—how fast you add or remove “charge.” A gentle
trickle (low power) eventually fills the battery; a wide‑open faucet (high power) fills it
quickly.

8.1 Work as Force Along a Displacement
For a displacement from r1 to r2 under force F (r), the work done by the force is

W =

∫ r2

r1

F · dr =

∫ s2

s1

Ft(s) ds,

where Ft is the tangential component along the path coordinate s. Geometrically, the dot
captures “how much the force points along the motion.” For a constant tangential force over a
straight path of length ∆s, this reduces to W = Ft∆s.

Sign and direction matter: only the component of force along the displacement contributes.
Forces perpendicular to the motion (e.g., an ideal normal force that enforces contact without
slip) do no work because F · dr = 0.

As illustrated in Figure 8.1, work is the area under the force–displacement curve Ft vs. s
between the start and end points. When F is conservative, this area depends only on the
endpoints and defines a potential energy difference ∆U (Chapter 9).
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Work as area under Ft vs. s

Figure 8.1: Work equals the shaded area under the tangential force Ft versus displacement s
from s1 to s2.

Worked Example: Stair Climb

A 70 kg person climbs one floor of height h = 3.0m in 6.0 s. The work against gravity is
W ≈ mgh = 70×9.81×3.0 ≈ 2.06 kJ. The average power is P̄ = W/∆t ≈ 2.06 kJ/6.0 s ≈
343W. Figure 8.2 summarizes the numbers.

Work Avg Power
0

1,000

2,000
2.06 kJ

343W

va
lu

e

Stair climb: work and average power

Figure 8.2: Work and average power for a one‑floor stair climb.

8.2 Work–Kinetic Energy Theorem
The net work done on a particle changes its kinetic energy:

Wnet = ∆K = K2 −K1 =
1
2mv22 − 1

2mv21.

Sketch‑first reasoning: if the net force does positive work, the speed increases; negative work
reduces speed. This turns force stories into speed stories without tracking every instant.

This statement holds regardless of whether forces are conservative or not; “net work” collects
contributions from all forces. When forces are conservative, we can package their work into a
potential U and trade Wnet for changes in K + U (Chapter 9).
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Analogy: Energy Ledger

Think of kinetic energy as a bank balance of motion. Positive work is a deposit; negative
work is a withdrawal. The statement “work equals change in kinetic energy” is just the
ledger balancing.

To visualize the nonlinearity of kinetic energy with speed, Figure 8.3 plots K(v) and marks
two speeds.

0 1 2 3 4 5 6 7 8

0

10

20

30

v1

v2

v [m/s]

K
[J

]

K(v) = 1
2mv2 (with m = 1)

Figure 8.3: Kinetic energy grows quadratically with speed: doubling speed quadruples K.

8.3 Power

Power is the instantaneous rate at which work is done: P =
dW
dt = F ·v. A high power delivery

changes kinetic energy quickly; a low power delivery takes time. Constant power means equal
areas in P (t) give equal chunks of work. In rotational problems (Chapter 11), the analogous
relation is P = τ ω.

As a simple illustration, Figure 8.4 shows a short interval of nearly constant power and the
work accumulated as the area under P (t).
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Work over an interval is area under P (t)

Figure 8.4: Power over time: the shaded area under P (t) equals the work done between t1 and
t2.
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8.4 Worked Example: Same Work Two Ways
Consider a push of constant tangential force Ft = 100N over a straight ∆s = 3m. The work
from the force–distance view is

W = Ft∆s = 100× 3 = 300 J.
If the motion happens at a steady speed v = 1.5m/s for ∆t = 2 s, the power is constant
P = Ftv = 150W and the work from the power–time view is

W =

∫ t2

t1

P dt = P ∆t = 150× 2 = 300 J.

Both paths agree, as shown in Figure 8.5.
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Figure 8.5: The same work computed two ways: area Ft∆s under force–distance, and area
P ∆t under power–time.

8.5 Everyday Energy Examples
Energy reasoning excels when only the start and finish matter. Three favorites:

• Stair climb: Work ≈ mgh; power is higher when you sprint.

• Bike up a hill: Same vertical gain h gives the same mgh of work, regardless of path;
timing changes power.

• Car speeding up: Engine power raises K; doubling speed takes four times the energy.

8.6 Exercises
Quick practice connecting forces, work, energy, and power.

1. Units. Check the SI units of work, energy, and power.

2. Area and work. For the piecewise force in Figure 8.1, estimate the shaded area (work)
by counting grid squares.

3. Kinetic energy growth. Using Figure 8.3, explain why doubling speed takes four times
the energy.

4. Practical: Stair climb. Estimate the work to climb one floor; compare power for an
easy pace vs. a sprint.

5. Power area. On Figure 8.4, compute the shaded work between t1 and t2.
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8.7 Summary and Review
A quick checklist before moving on:

• Work is the integral of tangential force along a displacement (area under Ft vs. s).

• Net work changes kinetic energy: ∆K = Wnet.

• Power is the rate of doing work: areas under P (t) accumulate work (P = τ ω in rotation;
Chapter 11).

• Perpendicular forces do no work; the sign of work follows alignment with motion.

Forces or Energy?

Choosing a method, made simple:

• Use energy for speeds at positions or turning points, when only the start and finish
matter; path‑independent when forces are conservative.

• Use forces (and components) for directions, time evolution, or when
non‑conservative forces dominate.

• Mix them wisely: forces set up constraints and signs; energy closes the speed/height
loop.

8.8 Where We’re Heading Next
In Chapter 9 we combine work and kinetic energy with potential energy and the conservation
law K +U = const for conservative forces; then we use energy diagrams to read turning points.

Common Pitfalls

Avoid these slips:

• Forgetting that only net work changes kinetic energy.

• Using energy conservation when non‑conservative work is significant without ac-
counting for it.

• Dropping the dot product: only the component of force along motion contributes
to work.

Try in 60 seconds

Tiny wins using the new tools:

• Point at a moving object and say whether the net work on it is likely positive,
negative, or near zero over the next second—and why.

• Sketch any Ft vs. s piecewise‑constant curve and shade the work between two
marks.

• Double a speed in your head and state what happens to K.

• Write P = F · v for a car pushing forward with force F at speed v.



Chapter 9
Potential Energy and Conservation of
Energy

For certain forces, we can store their “influence” in a scalar function U called potential energy.
When only such conservative forces act, the total mechanical energy E = K +U stays constant
and the motion traces out the landscape of U .

Learning Objectives

You will identify conservative forces, compute and sketch common potentials, use E =
K+U to find speeds and turning points, and read energy diagrams for qualitative motion.

Symbols at a Glance

U potential energy, K = 1
2mv2 kinetic energy, E total mechanical energy, F force, Fx =

− dU/dx in 1D, k spring constant, g gravitational acceleration.

Analogy: Height Map

Think of U as a height map. Mechanical energy E = K + U is like hiking with a fixed
budget: when you go “higher” on the map (larger U), your running energy K must drop;
when the trail goes down, K increases. Turning points occur where your budget just
equals the height.

9.1 Conservative Forces and Potentials
In one dimension, a force is conservative if it can be written as Fx(x) = − dU/dx for some
U(x). In multiple dimensions, conservative means F = −∇U ; equivalently, the work around
any closed loop is zero. In smooth, simply connected regions this is the same as ∇×F = 0 (see
Appendix C). Only differences in U matter; adding a constant does not change physics.

Two workhorses:

• Near‑Earth gravity: Fy = −mg gives U(y) = mgy up to an arbitrary constant.

• Hooke spring: Fx = −kx gives U(x) = 1
2kx

2.

As previewed in Figure 9.1, one is linear, the other parabolic.
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Figure 9.1: Two basic potentials: linear for near‑Earth gravity and parabolic for a spring. For
inverse‑square gravity U = −GMm/r, see Chapter 12.

9.2 Energy Conservation and Turning Points
For conservative forces, E = K + U stays constant. On an energy diagram U(x), draw a
horizontal line at E; the motion is allowed where E ≥ U(x), with speed v(x) =

√
2
m(E − U(x)).

Points where E = U are turning points (v = 0).
The slope of U controls the direction of acceleration: a(x) = Fx

m = − 1
m

dU
dx . Where U

decreases with x (downhill), a > 0; where it increases, a < 0. Near a stable equilibrium x0 (a
local minimum of U), a Taylor expansion U(x) ≈ U(x0) +

1
2k(x− x0)

2 yields simple harmonic
motion with k = U ′′(x0) and ω =

√
k/m (see Chapter 13).

Analogy: Hiking an Energy Landscape

Imagine hiking on a landscape U(x). Your “height” U plus your “running energy” K
must equal the fixed total E. When the trail rises to meet E, you have to stop and turn.

As shown in Figure 9.2, a spring potential with total energy E yields symmetric turning
points and the shaded gap between E and U visually represents K. A gravitational version for
a vertical toss appears in Figure 9.3.
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Figure 9.2: Energy diagram for a spring: shaded region represents kinetic energy K = E−U(x);
dots mark turning points where K = 0.
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Figure 9.3: Linear gravitational potential per unit mass U/m = gy (navy) and constant total
energy per unit mass E/m = 1

2v
2
0 (red). The intersection marks hmax.

Worked Example: Ball Toss via Energy

Throw a ball upward from y0 = 0 with speed v0 = 12m/s (ignore air). With U(y) = mgy
and E = K0 + U0 = 1

2mv20, the apex height hmax occurs where K = 0, so E = U :
mghmax = 1

2mv20 giving hmax = v20/(2g) ≈ 7.35m. The speed at any height follows
v(y) =

√
v20 − 2gy. Figure 9.3 shows U(y) and the energy line with hmax marked.

9.3 Non‑Conservative Forces (Brief)
When friction or drag act, mechanical energy changes according to the work by non‑conservative
forces: ∆E = Wnc. Speeds are then found from K2 = K1 +Wnc −∆U . In practice: start with
E1 = K1+U1, add the signed work by non‑conservative forces to get E2, and solve K2 = E2−U2

for the speed.
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9.4 Examples
Before computing, read the energy picture and predict: where can it move (allowed region),
where will it turn, and where is it fastest (largest K)?

• Mass–spring: With total energy E, the speed at x follows v(x) =
√

2
m(E − 1

2kx
2).

• Ball toss (no air): U = mgy, so v(y) =
√
v20 − 2g(y − y0); the peak where v = 0 solves

E = U .

• Slide with friction: Loss Wnc = −f∆s reduces the total; compare speeds at equal
heights with/without friction.

9.5 Exercises
1. Units. What are the SI units of U , K, and E? Verify consistency for U = 1

2kx
2.

2. Turning points. For U = 1
2kx

2 and total E, find the turning points and the maximum
speed.

3. Gravitational climb. A mass rises from y0 to y1 > y0 without friction. Find v1 from
energy.

4. Practical: Springs. Compress a small spring by measured x; estimate stored energy
1
2kx

2 using a catalog value of k.

5. Friction loss. With kinetic friction f = µkN , estimate the percentage of initial kinetic
energy lost over ∆s.

9.6 Summary and Review
A brief checklist of the main ideas from this chapter:

• Conservative forces admit a potential U with F = −∇U (or Fx = − dU/dx in 1D).

• Energy conservation: E = K + U constant; turning points where E = U .

• Energy diagrams allow quick, qualitative predictions of speed and accessible regions.

9.7 Where We’re Heading Next
In Chapter 10, we model systems of particles, center of mass, and momentum conservation—
powerful ideas for collisions and collective motion.

Common Pitfalls

Keep these in mind:

• Choosing a “zero of U” and then thinking it changes physics—only differences in U
matter.

• Assuming E is constant when non‑conservative forces (like friction) do work.

• Misreading turning points: E = U marks v = 0; motion is forbidden where E < U .
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Try in 60 seconds

Quick checks with energy diagrams:

• Draw U = 1
2kx

2 and a horizontal E; mark turning points and where speed is largest.

• Raise U by a constant (change the zero). Does anything measurable change? Ex-
plain.

• For U = mgy, move from y0 to y1 without friction. Write v1 from E in one line.



Part V
Systems, Momentum, and Rotation

Part V Overview

We step from single particles to systems and spinning bodies. Chapter 10 develops center
of mass, momentum, and conservation for collisions. Chapter 11 introduces rotational
kinematics and dynamics, relating torques to angular acceleration with energy and mo-
mentum analogies.
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Chapter 10
Systems of Particles and Momentum

Real objects are made of many parts. Treating them as systems leads to simple, powerful
summaries: center of mass (COM) tracks collective position; momentum tracks collective motion
and is conserved for isolated systems.

Learning Objectives

You will compute a COM in 1D/2D, write momentum balances for systems, recognize
impulse as area under force–time, and use momentum conservation for simple collisions.

Symbols at a Glance

R center of mass, M total mass, ri position of mass mi, p = mv momentum,
∑

p total
momentum, impulse J .

Analogy: Crowd and Spokesperson

The COM is the crowd’s “spokesperson”: where the mass acts as if concentrated. Mo-
mentum is the spokesperson’s “inertia of motion”—harder to change for heavier/faster
crowds.

10.1 Center of Mass
Intuition first: the COM is the balancing point. If you could support the system at a single
location without it tipping, that location would be R. For point masses in 2D,

R =

∑
imiri∑
imi

, M =
∑
i

mi.

The formula says “average the positions, but weight by masses.” For two masses on a line, the
COM lies on the segment joining them and sits closer to the heavier mass in the ratio of masses.

Two key dynamical facts follow directly (in any inertial frame): the total momentum equals
total mass times COM velocity, and external forces move the COM like a single particle of mass
M :

P =
∑
i

miṙi = M Ṙ, M R̈ =
∑

Fext.

Internal forces cancel in pairs (Newton’s third law), so they do not affect R̈. This is why
momentum conservation is so powerful for isolated systems: if

∑
Fext = 0, then Ṙ is constant

and P is conserved.
As previewed in Figure 10.1, increasing m2 pulls the COM toward m2; equal masses place

the COM at the midpoint.
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Figure 10.1: Center of mass of two point masses lies along the connector, closer to the heavier
mass.

10.2 Momentum and Impulse
Momentum adds across parts:

∑
p is the system’s “motion budget.” External forces change it;

internal forces cancel in pairs. Over a short time with a large force (a shove), it is easiest to
think in terms of impulse

J =

∫ t2

t1

F dt,
∑

p 2 =
∑

p 1 + J .

As Figure 10.2 shows, the shaded area under F (t) is the impulse. A narrow, tall spike and a
short, wide push can deliver the same area and therefore the same change in momentum.

Only external impulse changes total momentum: ∆P = Jext. Equivalently for the COM,

Ṙ2 = Ṙ1 +
Jext
M

.
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Figure 10.2: A shove: the impulse J is the shaded area under force–time.
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Worked Example: Impulse from a Triangular Force Pulse

Using Figure 10.2 as the template, the shaded area under F (t) is the impulse J . For an
ideal triangular pulse of base ∆t and peak Fmax, J ≈ 1

2Fmax ∆t.
A baseball (m = 0.145 kg) experiences a roughly triangular bat force: rises linearly from
0 to 5000N over 2.0ms, then falls back to 0 over the next 2.0ms. The impulse is that
triangle’s area

J = 1
2 Fmax ∆t = 1

2 (5000) (4.0× 10−3)N s = 10.0N s.

The speed change is ∆v = J/m ≈ 69m/s along the force direction. Different pulse shapes
with the same shaded area in Figure 10.2 deliver the same J and thus the same ∆v.

10.3 Collisions
During a brief, isolated impact, external forces are negligible compared to the internal forces
between the bodies, so total momentum is conserved:

m1u1 +m2u2 = m1v1 +m2v2 (1D).

Elastic collisions also conserve kinetic energy; inelastic ones do not (some energy becomes
heat/deformation). Conservation of momentum predicts directions and relative magnitudes
even when details of the contact are complicated.

In 1D, the coefficient of restitution e summarizes how bouncy the collision is via relative
speeds:

e =
v2 − v1
u1 − u2

, 0 ≤ e ≤ 1.

Here e = 1 is elastic (kinetic energy conserved), and e = 0 is perfectly inelastic (stick together).
Momentum plus e determines v1, v2; use energy conservation only for e = 1 (see Chapter 8).

Before Figure 10.4, make a sketch with arrows: heavier objects tend to reverse lighter ones;
equal masses exchange speeds in a head‑on elastic collision.

m1u1 m2u2

(m1 +m2)v

Figure 10.3: Inelastic stick collision: momenta before (top) and combined momentum after
(bottom).

Worked Example: Inelastic “Stick” Collision

Cart A (m1 = 1.0 kg) moves right at u1 = 3.0m/s. Cart B (m2 = 2.0 kg) moves left
at u2 = −1.0m/s. They latch (perfectly inelastic). Momentum conservation gives the
common speed

v =
m1u1 +m2u2

m1 +m2
=

(1)(3) + (2)(−1)

3
=

1

3
m/s (to the right).

Kinetic energy drops: Kbefore = 1
2m1u

2
1 +

1
2m2u

2
2 = 1

2(1)(9) +
1
2(2)(1) = 5.5 J; Kafter =

1
2(m1 + m2)v

2 = 1
2(3)(1/9) = 0.167 J. The missing ≈ 5.33 J became heat/deformation.

Figure 10.4 sketches before/after momentum arrows and the direction of motion.
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m1u1 m2u2

m1v1m2v2

Figure 10.4: 1D collision: momentum arrows before (top) and after (bottom).

10.4 Exercises
Practice reading COM, impulse, and collision statements.

1. COM of two masses. Find the COM for m1 at x = 0 and m2 at x = L; where is it
when m2 = 2m1?

2. Impulse area. Estimate the area in Figure 10.2 and relate it to a change in momentum.

3. Collision direction. Two carts collide head‑on with m2 > m1; argue which way the
COM moves during impact.

10.5 Summary and Review
A quick checklist before moving on:

• Center of mass summarizes where mass “acts”; it’s a weighted average of positions.

• Momentum adds for subsystems and changes only by external impulse (∆P = Jext).

• Short impacts: use conservation of momentum for quick, robust predictions.

10.6 Where We’re Heading Next
In Chapter 11, we introduce rotation: angular kinematics, torque, and rotational energy.

Common Pitfalls

Short reminders to avoid mistakes:

• Mixing up internal and external forces in momentum balances—only externals
change

∑
p.

• Forgetting to declare axis directions and signs on diagrams.

• Using energy conservation in inelastic collisions—momentum is conserved, kinetic
energy generally is not.

Try in 60 seconds

Fast practice:

• Place two coins on a line and guess their COM; check by balancing a ruler.

• Sketch a force pulse and mark the impulse as area.

• Draw before/after momentum arrows for a gentle bounce vs. a stick.



Chapter 11
Rotation of Rigid Bodies

Rotation extends motion to angles and torques. We mirror linear ideas with angular ones and
preview energy and momentum in rotational form.

Learning Objectives

You will describe angular position/velocity/acceleration, relate torque to angular acceler-
ation, and recognize rotational kinetic energy.

Symbols at a Glance

θ angle, ω angular velocity, α angular acceleration, τ torque, r lever arm, I moment of
inertia (preview).

Analogy: Door and Handle

Pushing a door near the hinge changes little; at the handle it turns easily. Torque
combines force and lever arm—how hard and how far from the pivot.

11.1 Angular Kinematics
Angular position θ measures “how far turned,” ω = θ̇ how fast it turns, and α = ω̇ how quickly
the turn rate changes. These mirror linear kinematics: angle plays the role of position, angular
velocity that of speed, and angular acceleration that of linear acceleration. At constant α,

ω(t) = ω0 + αt, θ(t) = θ0 + ω0t+
1
2αt

2.

Reading a plot of θ(t) or ω(t) is like reading x(t) and v(t) from Chapter 3: slopes give rates;
areas give accumulated angle.

Use radians for calculus with angles. For motion along a circle of radius R, arc length and
angle relate by s = Rθ, so v = ṡ = Rω and at = Rα; the inward (normal) part remains
an = v2/R (Chapter 6).

11.2 Torque and Lever Arm
A force F at position vector r produces torque τ = r × F about the origin. In the plane,
τ = rF sinϕ (scalar out of page), where ϕ is the angle between r and F . Long lever arms
amplify torque; perpendicular pushes are most effective. Right‑hand rule: curl fingers from r
toward F—the thumb points along τ .
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In rotational dynamics, torque is to angular acceleration what force is to linear acceleration.
With moment of inertia I (a measure of rotational inertia), the parallel of Newton’s second law
is

τnet = I α (about a fixed axis; preview).

The rotational kinetic energy analogue is Krot =
1
2Iω

2.
Work and power have clean rotational forms (compare Chapter 8): an infinitesimal angular

displacement dθ under torque τ does work dW = τ dθ, and the instantaneous power is P = τ ω.
Before Figure 11.1, note: longer lever arms and perpendicular pushes maximize torque.

pivot
r

F

ϕ

Figure 11.1: Torque about a pivot: τ = rF sinϕ measures how strongly F twists around the
pivot.

Worked Example: Wrench and Angle

Torque depends on the perpendicular component of the pull. With wrench length r and
pull F at angle ϕ to the wrench, only F⊥ = F sinϕ twists, so τ = rF sinϕ. For r = 0.25m
and F = 120N: a perpendicular pull (ϕ = 90◦) yields τ = 30N m; at ϕ = 30◦, τ = 15N m.
Doubling to r = 0.50m at 30◦ restores τ = 30N m. See Figure 11.2 for the geometry and
Figure 11.3 for how τ varies with angle and lever length.

pivot

r

F

F⊥ = F sinϕ
ϕ = 30◦

Figure 11.2: Only the perpendicular component F⊥ creates torque about the pivot; τ = rF sinϕ.
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τ(ϕ) = rF sinϕ

r = 0.25m
r = 0.50m

Figure 11.3: Torque vs. angle for two wrench lengths. Longer wrenches lift the rF sinϕ curve;
note how r = 0.50m at 30◦ matches the perpendicular pull on the shorter wrench.
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11.3 Moment of Inertia and Angular Momentum
For rotation about a fixed axis, the moment of inertia measures how mass resists angular
acceleration:

I =
∑
i

mir
2
⊥,i (point masses), I =

∫
r2⊥ dm (continuous).

About an axis parallel to the center‑of‑mass (COM) axis and offset by distance d, the paral-
lel‑axis relation gives I = ICOM +Md2. The angular momentum about the axis is L = I ω (for
a rigid body with fixed axis), and the torque law can be written as

τext =
dL
dt = I α (if I is constant about the axis).

When τext = 0, angular momentum is conserved. Rotational kinetic energy mirrors the linear
form: Krot =

1
2Iω

2.

11.4 Torque vs. Horsepower in Cars
Torque τ is a twisting tendency (how hard the engine turns the crank). Horsepower is power—
how fast work is done. The bridge is one line:

P = τ ω

where ω is the crankshaft’s angular speed (in rad/s). At the same torque, revving faster multi-
plies power; at the same speed, more torque multiplies power.

Before Figure 11.4, keep an eye on shapes: typical street engines have a broad torque “mesa”
in the mid‑range; power rises with RPM because P = τ ω.

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500
0

0.5

1
broad torque “mesa”

P peaks at higher n

engine speed n [RPM]

sc
al

ed
un

its

Typical curves: torque is broad; power rises with RPM

torque (scaled)
power (scaled)

Figure 11.4: A stylized engine map: torque is broad in the mid‑range; power grows with n
because ω = 2πn/60.

What You Feel vs. How Fast You Go
At low speed in a short gear, wheel torque (engine torque multiplied by gear and final drive
ratios, minus losses) gives strong acceleration feel. At high speed, aerodynamic drag grows
rapidly and you need power to hold speed—hence peak power roughly sets top speed (all else
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equal). Gearing trades RPM for wheel torque: lower gears multiply engine torque more, higher
gears trade torque for speed.

Worked Example: Back‑of‑the‑Envelope

An engine rated at 150 HP at 6000 RPM. Convert to torque at that RPM. Using 1HP ≈
746W, P ≈ 112 kW, and ω = 2πn/60 ≈ 2π · 6000/60 ≈ 628 rad/s,

τ =
P

ω
≈ 112× 103

628
≈ 178N m.

If the same engine makes τ ≈ 240N m at 3000 RPM, then P = τ ω ≈ 240·(2π ·3000/60) ≈
75 kW—lower power at lower RPM despite higher torque.

Analogy: Levers and Ladders

Gears are levers for rotation. A short ladder (low gear) lifts you quickly over small vertical
distances (strong push off the line). A long ladder (high gear) covers more distance per
step but each step changes height less (less wheel torque, more road speed).

For a power‑based view and efficiency notes, revisit Chapter 8. The equation P = F · v at
the wheels ties road force and speed to the engine’s P = τ ω through gearing and losses.

Worked Example: Rolling Without Slipping

A bicycle wheel of radius R = 0.34m rolls without slipping at v = 6.0m/s. The angular
speed is ω = v/R ≈ 17.6 rad/s. Points at the rim have velocity vrim = vCM + ω × r:
the top point moves at 2v relative to the ground and the bottom point momentarily at 0.
Figure 11.5 shows the velocity arrows.

vCM

2v

0

Figure 11.5: Rolling without slipping: v = ωR. Top point instant speed = 2v; bottom point
instant speed = 0.

11.5 Exercises
Practice reading angular motion and torque pictures.

1. Turn rate. Convert 60 RPM to rad/s.

2. Best push. On a wrench of length r, at what angle do you push for maximum torque?

3. Practical: Door test. Try the door near hinge vs. handle; describe the torque difference.
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11.6 Summary and Review
A quick checklist of angular ideas:

• Angular kinematics parallels linear: θ, ω = θ̇, α = ω̇.

• Torque combines force and lever arm: τ = r×F ; perpendicular force maximizes the twist.

• Rotational dynamics preview: τnet = I α, Krot =
1
2Iω

2.

11.7 Where We’re Heading Next
In Chapter 12 we turn to Newtonian gravitation—fields, potential, and simple orbits—then
return to oscillations and fluids with this rotational toolkit in mind.

Common Pitfalls

Avoid these frequent slips:

• Calling any force a “torque” without specifying the pivot and lever arm.

• Pushing along the lever instead of perpendicular to it—yields tiny torque.

• Mixing radians with degrees when using ω and α.

Try in 60 seconds

Quick angular drills:

• Point at a rotating object (fan/wheel) and identify θ, ω, α qualitatively.

• On Figure 11.1, explain why pushing perpendicular to r maximizes torque.

• Convert 120 RPM to rad/s.



Part VI
Gravity, Oscillations, and Continuum

Basics

Part VI Overview

We widen the scope to gravity, oscillations, and simple continuum ideas. Chapter 12
develops Newtonian gravitation and gravitational potential; Chapter 13 studies simple
harmonic motion and damping; Chapter 14 sketches essentials of fluids within the New-
tonian framework.
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Chapter 12
Newtonian Gravitation

Gravity connects motion on Earth with motion of the planets. In Newton’s picture, masses
attract with a force directed along the line joining them and proportional to the product of
masses and inversely to the square of their separation. The same rule that pulls an apple
downward bends the Moon’s path into a near circle—one idea, many scales.

Learning Objectives

You will write and interpret Newton’s law of gravitation, relate gravitational field and
potential, and reason about simple orbit conditions.

Symbols at a Glance

G gravitational constant, m,M masses, r separation, g gravitational field, U gravitational
potential energy.

Analogy: Invisible Springs

Think of gravity as an invisible spring that always pulls along the line joining two masses—
weak when far apart, stronger when closer (inverse‑square rather than Hooke’s linear law).

12.1 Newton’s Law of Universal Gravitation
Start with the rule itself, then read it in pictures. For two point masses m and M separated
by distance r, the magnitude of the gravitational force is For clarity we denote this distance as
R⊕M (rather than using punctuation in the subscript).

F = G
mM

r2
, directed along the line joining the masses.

In vector form (on m due to M):

F (r) = −G
mM

r2
r̂ = −∇

(
− GmM

r

)
, r̂ =

r

‖r‖
.

Superposition holds: fields and forces from multiple sources add as vectors. Because gravity is
central (along r̂), angular momentum about the attracting mass is conserved so motion lies in
a plane.

We summarize the “effect per kilogram” with the gravitational field of M :

g(r) = −GM
r̂

r2
(points inward, weakens with 1/r2).
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Before Figure 12.1, note how field arrows get shorter (weaker) as you move away.

Figure 12.1: Radial gravitational field around a point mass: arrows point inward and weaken
with distance.

Notation Used Below

We write R⊕ for Earth’s radius, M⊕ for Earth’s mass, and R⊕M for the Earth–Moon
center‑to‑center distance. The near‑Earth gravitational acceleration is g ≈ 9.81m/s2,
and AU denotes the astronomical unit.

12.2 Potential and Energy
For conservative forces, energy helps us reason quickly. Choosing U(∞) = 0, the potential
energy of m in the field of M is

U(r) = − GmM

r
, Φ(r) =

U(r)

m
= − GM

r
.

Two features stand out: U is negative for bound states (you must do work to escape), and
U → 0 as r → ∞. Forces and potentials are linked by F = −∇U (Appendix Appendix C). As
shown in Figure 12.2, the graph dives downward and creeps toward zero far away.

It is convenient to define the gravitational parameter µ = GM . The specific mechanical
energy (per unit mass) is

ε =
v2

2
+ Φ(r) =

v2

2
− µ

r
.

Bound orbits have ε < 0 (ellipses), escape trajectories have ε ≥ 0 (parabolic at 0, hyperbolic if
> 0). For a circular orbit of radius R, ε = −µ/(2R), since v2 = µ/R.
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Gravitational potential Φ(r) = −GM/r (scaled)

Figure 12.2: Gravitational potential decreases in magnitude with distance and approaches zero
from below.

12.3 Circular Orbit Condition
An object of mass m orbits M in a circle of radius R when gravity supplies precisely the needed
centripetal acceleration. Equate inward forces:

mv2

R
= G

mM

R2
⇒ v(R) =

√
GM

R
, T =

2πR

v
= 2π

√
R3

GM
.

As shown in Figure 12.3, orbit speed decreases with altitude like R−1/2, while the period grows
like R3/2 (Kepler’s third law for circular orbits). Near Earth’s surface, g = µ/R2

⊕ connects µ to
the familiar g.
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Circular orbit speed v(R) =
√
GM/R

Figure 12.3: Circular orbit speed falls as R−1/2: farther means slower.

An energetic bonus: the escape speed from radius R follows from energy conservation with

E = 0 at infinity: 1
2mv2esc −GMm/R = 0, so vesc =

√
2GM

R
=

√
2 vcirc.
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Worked Example: Parking a Geostationary Satellite

To remain above one longitude, a satellite must share Earth’s sidereal rotation period
Tsid = 86 164 s. With µ⊕ = GM⊕ ≈ 3.986× 1014 m3/s2,

R =

(
µ⊕T

2
sid

4π2

)1/3

≈ 4.216× 107 m.

Subtract Earth’s mean radius R⊕ ≈ 6.371 × 106 m to find the altitude: h = R − R⊕ ≈
3.58 × 107 m (about 35 800 km). The orbital speed follows from v =

√
µ⊕/R ≈ 3.07 ×

103 m/s. The geometry is sketched in Figure 12.4.

Earth v ≈ 3.1 km/s
R ≈ 42 200 km

R⊕

h

T = 23 h 56m

Figure 12.4: Geostationary orbit: the radius R ≈ 42 200 km (altitude h ≈ 35 800 km) yields a
sidereal rotation period.

12.4 Everyday Gravity Examples
Gravity’s inverse‑square law explains apples and orbits with the same symbols. Here are con-
crete, number‑driven examples with a few friendly plots.

Worked Example: Falling Apple

An apple drops from a branch at height h0 = 3.0m above the ground. Near Earth’s
surface the gravitational field is nearly uniform, g ≈ 9.81m/s2 downward. With zero
initial speed,

y(t) = h0 − 1
2gt

2, v(t) = ẏ(t) = −gt.

The fall time solves y(T ) = 0: T =

√
2h0
g

≈
√

6.0

9.81
≈ 0.78 s. The impact speed is

|v(T )| = gT ≈ 7.7m/s (about 28 km/h).
Air drag would reduce the speed a bit, but over 3m the constant‑g model is an excellent
first estimate.
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Falling apple from h0 = 3m under g = 9.81m/s2

Figure 12.5: Apple height vs. time for a 3m drop. Dots emphasize discrete time samples; the
curve is the constant‑g analytic solution.

Moon Held by Earth’s Gravity

The Moon’s nearly circular path is continuous free fall around Earth. Using M⊕ and
Earth–Moon distance R⊕ext–Moon,

v2

R⊕ext–Moon︸ ︷︷ ︸
needed centripetal

=
GM⊕

R2
⊕ext–Moon︸ ︷︷ ︸

gravity from Earth

⇒ v =

√
GM⊕

R⊕ext–Moon
.

Numerically, insert GM⊕ ≈ 3.986× 1014 m3/s2 and R⊕M ≈ 3.844× 108 m:

v ≈ 1.02× 103 m/s,
a ≈ 2.7× 10−3 m/s2,

T ≈ 2.37× 106 s (≈ 27.5days).

Compare aMoon ≈ 2.7 × 10−3 m/s2 to g ≈ 9.81m/s2 at Earth’s surface: the same law,
different distance scale.
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Figure 12.6: How Earth’s gravitational acceleration weakens with distance. The Moon orbits
where g is about 0.003m/s2.

Sun–Earth Numbers, Same Rule

At Earth’s orbital radius (R ≈ 1AU = 1.496× 1011 m), the Sun’s gravity provides

GM⊙
R2

≈ 5.93× 10−3 m/s2, v⊕ =

√
GM⊙
R

≈ 29.8 km/s.

This acceleration is far smaller than g at Earth’s surface but acts continuously over vast
distances, curving Earth’s path into a year‑long orbit. One idea links falling fruit and
planetary motion.

12.5 Exercises
Practice reading gravity graphs and quick estimates.

1. Field magnitude. Compute ‖g‖ at Earth’s surface from M⊕, R⊕; compare with 9.8m/s2.

2. Orbit speed. Find the speed for a circular orbit at altitude h above a planet of radius
R (assume h � R for an easy estimate).

3. Escape vs. circular. Show that vesc =
√
2 vcirc at the same R.

12.6 Summary and Review
• Inverse‑square attraction: F = GmM/r2, field inward with 1/r2.

• Potential energy: U = −GmM/r with U(∞) = 0; F = −∇U .

• Circular orbit: v =
√
GM/R, T = 2π

√
R3/(GM); specific energy ε = −GM/(2R).

12.7 Where We’re Heading Next
In Chapter 13, we study simple harmonic motion and damping.
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Common Pitfalls

Quick cautions: confusing 1/r2 with 1/r; forgetting that U is negative for bound states;
assuming circular orbits are the only possibility.

Try in 60 seconds

Quick wins:

• On Figure 12.2, point to where the object is most bound and explain why.

• Read off from Figure 12.3: does doubling altitude more than halve the orbit speed?

• Write the escape speed in terms of g and R for a spherical planet.



Chapter 13
Simple Harmonic Motion and
Oscillations

Oscillations are everywhere: springs, pendulums, violin strings. The simplest model is the
simple harmonic oscillator (SHO), where the restoring force pulls back toward equilibrium in
proportion to displacement.

Learning Objectives

You will derive and solve the SHO equation, interpret x(t), v(t), and the phase portrait,
and reason about how energy shuttles between U and K. You will also read the basic
effects of damping and driving.

Symbols at a Glance

k spring constant, m mass, ω0 =
√

k/m natural frequency, A amplitude, ϕ phase, γ
damping factor (preview), F0 drive amplitude (preview).

Analogy: Energy Pendulum

Imagine energy sloshing back and forth—when x is largest, energy sits mostly in U ; when
passing through x = 0, energy is mostly in K. Perfectly elastic motion keeps the total
full; damping slowly leaks it away.

13.1 From Force Law to Equation
Hooke’s law states F = −kx. Newton’s second law gives

mẍ = −kx ⇒ ẍ+ ω2
0x = 0, ω0 =

√
k

m
.

This constant‑coefficient ODE has sinusoidal solutions

x(t) = A cos(ω0t+ ϕ), v(t) = ẋ(t) = −Aω0 sin(ω0t+ ϕ),

with period T = 2π/ω0. As previewed in Figure 13.1, x(t) oscillates smoothly with fixed
amplitude and period.
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SHO: x(t) = A cos(ω0t)

Figure 13.1: Position of an ideal SHO with A = 1, ω0 = 1 (scaled units).

13.2 Phase Portrait and Geometry
Plotting v against x eliminates time and reveals the geometry of SHO: combining x = A cos θ
and v = −Aω0 sin θ gives ( x

A

)2
+

(
v

Aω0

)2

= 1,

an ellipse (a circle if axes are scaled equally). Motion runs around the ellipse at constant angular
speed in phase space. Figure 13.2 shows the picture.

Energy gives the same ellipse directly. Since E = 1
2kA

2 = 1
2kx

2 + 1
2mv2, divide by 1

2kA
2 to

obtain
x2

A2
+

v2

(Aω0)2
= 1, ω0 =

√
k

m
,

which is the phase‑space ellipse without invoking sines and cosines. Either route—explicit
solution or energy—leads to the same geometry.
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Figure 13.2: Phase portrait for SHO in scaled units: a circle traced at constant speed.

13.3 Energy Picture
The total energy is constant and splits between potential and kinetic:

E = 1
2kx

2 + 1
2mv2 = 1

2kA
2 = constant.

At turning points (x = ±A) energy is all potential; at x = 0 energy is all kinetic. Figure 13.3
shades U and K over time.
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Figure 13.3: Energy exchanges while E stays constant (scaled units: k = m = A = ω0 = 1).

13.4 Small‑Angle Pendulum ≈ SHO
Gravity plus geometry creates another SHO. A simple pendulum of length L and small angle θ
from the vertical obeys

(tangential) mL θ̈ = −mg sin θ ≈ −mg θ (|θ| � 1),
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so θ̈ + (g/L) θ = 0 with natural frequency ω0 =
√
g/L. Thus the small‑angle pendulum is

an SHO in θ. This links back to Chapter 12: gravity supplies the restoring “spring.” The
linearization sin θ ≈ θ is accurate for modest angles (say |θ| ≲ 10◦–15◦); beyond that, the
period grows slightly with amplitude.

Before Figure 13.4, note that the restoring component is mg sin θ along the tangent and that
arc length s ≈ Lθ for small angles.

θ

mg

mg sin θ ≈ mg θ

Figure 13.4: Small‑angle pendulum: the tangential restoring component mg sin θ ≈ mg θ leads
to the SHO equation in θ.

13.5 Light Damping (Preview)
With small resistive forces Fdamp = −b v, the equation becomes mẍ + bẋ + kx = 0. Solutions
oscillate with slowly decaying amplitude Ae−γt where γ = b

2m and ω ≈
√
ω2
0 − γ2. It is common

to define the damping ratio ζ =
b

2
√
mk

=
γ

ω0
and the quality factor Q =

1

2ζ
(how many radians

of oscillation per e‑fold decay). Figure 13.5 shows the envelope.

−2 0 2 4 6 8 10 12 14 16 18 20 22

−1

0

1

t [s]

x
[m

]

Lightly damped oscillation: x(t) = Ae−γt cos(ωt)

Figure 13.5: Damping shrinks amplitude with an exponential envelope; frequency shifts slightly
from ω0.
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Worked Example: Car Suspension over a Speed Bump

A 1 200 kg compact car sits on a strut with spring rate k = 20 kN/m and damping c =
1.5 kN s/m. Approximating a 5 cm speed bump as an initial compression x(0) = 0.05m
with v(0) = 0, the equivalent single degree of freedom has

ω0 =

√
k

m
≈ 4.08 rad/s, ζ =

c

2
√
mk

≈ 0.15.

Because ζ < 1, oscillations persist but decay with envelope Ae−ζω0t. The damped fre-
quency is ωd = ω0

√
1− ζ2 ≈ 4.03 rad/s, giving a half-cycle time π/ωd ≈ 0.78 s. The

first rebound reaches |x| ≈ 0.05 e−ζω0(π/ωd) ≈ 0.031m (3.1 cm), and the next peak falls
to about 0.019m (1.9 cm). The ride smooths out within a few seconds, as sketched in
Figure 13.6.
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≈ 0.019m
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x
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Car-body bounce after a 5 cm bump (modelled as damped SHO)

Figure 13.6: Damped bounce response with m = 1200 kg, k = 20 kN/m, c = 1.5 kN s/m. Peaks
shrink quickly as the envelope e−ζω0t decays.

13.6 Driven Response (Preview)
A periodic drive F0 cos(Ωt) leads to steady oscillations at the drive frequency Ω with amplitude
(for light damping)

A(Ω) =
F0/m√

(ω2
0 − Ω2)2 + (2γ Ω)2

.

Amplitude peaks near Ω ≈ ω0 (resonance) and broadens with larger γ. The steady‑state motion
also lags the drive by a phase ϕ with tanϕ =

2γ Ω

ω2
0 − Ω2

. Full derivations live in Appendix

Appendix D; Figure 13.7 plots the amplitude shape.
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Figure 13.7: Amplitude is largest near the natural frequency; damping broadens and lowers the
peak.

13.7 Exercises
Practice deriving, reading, and estimating.

1. Period. For m = 1, k = 4, compute ω0 and T .

2. Phase portrait. Show that (x/A)2 + (v/(Aω0))
2 = 1 for the SHO.

3. Light damping. If γ = 0.1ω0, estimate the amplitude after 10 periods.

13.8 Summary and Review
• SHO: mẍ+ kx = 0 with x(t) = A cos(ω0t+ ϕ), ω0 =

√
k/m.

• Phase‑space circle (scaled): motion at constant speed around the ellipse.

• Energy swaps between U and K while E remains constant; damping leaks energy slowly.

• Driving near ω0 produces large amplitudes (resonance) moderated by damping.

13.9 Where We’re Heading Next
In Chapter 14, we sketch how Newtonian ideas extend to simple fluids.

Common Pitfalls

Confusing ω0 with frequency in Hz (f = ω0/2π); thinking amplitude affects period
in the linear SHO; mixing degrees/radians in trig; assuming the phase‑space ellipse is
axis‑aligned without scaling.

Try in 60 seconds

Quick drills:

• From x(t) = A cos(ω0t), write v(t) and mark a quarter‑period phase shift.

• On the phase portrait, point to where U is maximal and where K is maximal.

• If γ doubles, does the envelope decay twice as fast? Explain.



Chapter 14
Fluids and Continuum Mechanics
(Introductory)

Many everyday phenomena involve continuous media rather than point masses. We sample
Newtonian ideas for fluids: pressure, buoyancy, and a taste of flow—enough to reason about
water, air, pipes, and simple lift effects without leaving the Newtonian toolbox.

Learning Objectives

You will reason about hydrostatic pressure, estimate buoyant forces, draw simple fluid
free‑body diagrams, and read continuity arguments for steady incompressible flow.

Symbols at a Glance

p pressure, ρ density, g gravitational acceleration, A area, Q flow rate (Q = Av), h depth.

Analogy: Stacked Bricks

Hydrostatic pressure is like stacked bricks—deeper layers carry more weight. Pressure
increases linearly with depth in an incompressible fluid, and differences in pressure across
surfaces produce net forces.

14.1 Pressure and Buoyancy
Consider a fluid at rest under gravity. A vertical column of height h carries the weight of the
fluid above: balancing forces on a thin slab gives

p(h) = p0 + ρgh (h measured downward from the free surface).

Pressure acts equally in all directions at a point. In differential form, hydrostatic balance reads
∇p = ρ g; in a uniform g = −g ŷ this integrates to p = p0 + ρgh. For a submerged body, the
pressure increases with depth on its bottom face relative to its top face, creating a net upward
buoyant force equal to the weight of displaced fluid (Archimedes):

Fb = ρgVdisp.

Float or sink? Compare densities: if ρobject < ρfluid the displaced weight can balance the
object’s weight and it floats; if ρobject > ρfluid it sinks. Before Figure 14.1, note the straight‑line
pressure–depth plot; Figure 14.2 shows a simple buoyancy free‑body diagram.
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Hydrostatic pressure: p = p0 + ρgh

Figure 14.1: Pressure increases linearly with depth in an incompressible fluid.

mg

Fb = ρgV

deeper ⇒ higher p

Figure 14.2: Buoyant free‑body diagram: pressure increases with depth; the net result is an
upward buoyant force that balances some or all of the weight.

14.2 Flow Basics (Preview)
For steady, incompressible flow in a pipe, mass conservation says ρA1v1 = ρA2v2, i.e. A1v1 =
A2v2—when the pipe narrows, the fluid speeds up. Along a streamline in slowly varying flow
without pumps or strong losses, Bernoulli’s principle balances energy per unit volume:

p+ 1
2ρv

2 + ρgz ≈ constant.

We use it qualitatively to understand tradeoffs between pressure, speed, and height. Assump-
tions matter: Bernoulli applies along a streamline for inviscid, steady flow (or where viscous
losses are small) and incompressible speeds (low Mach). When viscosity or turbulence domi-
nate, expect departures (see Chapter 15 for Reynolds number scaling). Figure 14.3 sketches
a narrowing pipe and velocity change. Figure 14.4 visualizes a faster flow over a curved top
surface (lower pressure) and a slower flow beneath (higher pressure), producing a net upward
force.

v1 v2 > v1

A1
A2

Figure 14.3: Continuity in a narrowing pipe: A1v1 = A2v2; reduced area implies higher speed
for incompressible steady flow.
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faster ⇒ lower p

slower ⇒ higher p

lift

Figure 14.4: Bernoulli lift sketch: faster flow over the curved upper surface reduces pressure
relative to the slower flow below, producing net upward force.

Worked Example: Garden Hose Nozzle Jet

A hose of diameter d1 = 1.6 cm feeds a nozzle of diameter d2 = 0.5 cm. The pressure
just upstream of the contraction is p1 = 200 kPa (gauge) and the jet exits to atmospheric
pressure (p2 ≈ 0 gauge). Treating water as incompressible with ρ ≈ 1,000 kg/m3 and
neglecting height changes,

A1v1 = A2v2, p1 +
1
2ρv

2
1 = p2 +

1
2ρv

2
2.

With A ∝ d2, v2 = (d1/d2)
2v1 ≈ 10.2 v1. Substitute into Bernoulli to solve for v1:

200× 103 ≈ 1
2ρ

(
(10.22 − 1)v21

)
⇒ v1 ≈ 2.0m/s, v2 ≈ 20m/s.

Tilt the nozzle upward by 30◦ at waist height (z ≈ 1m) and ignore drag: the jet range is
roughly

R ≈ v22
g

sin(60◦) ≈ 31m.

Real sprays break into droplets and slow sooner, but the estimate shows how a moderate
pressure and narrow nozzle yield a long-reaching jet. See Figure 14.5 for a geometric
sketch.

hose d1 = 1.6 cm nozzle d2 = 0.5 cm

p1 = 200 kPa

v1 ≈ 2m/s

v2 ≈ 20m/s

30◦

R ≈ 31m

Figure 14.5: Hose-to-nozzle contraction: continuity and Bernoulli give entrance speed v1 ≈
2m/s and jet speed v2 ≈ 20m/s. A 30◦ launch would reach roughly 30m neglecting air drag.

14.3 Exercises
Short, concrete checks:

1. Hydrostatics. A diver descends 15m in freshwater (ρ ≈ 1000 kg/m3). Estimate the
gauge pressure increase ∆p.

2. Buoyancy. A cube of side 0.2m floats in oil (ρ ≈ 800 kg/m3) with 3 cm above the surface.
Estimate the cube’s density.



CHAPTER 14. FLUIDS AND CONTINUUM MECHANICS (INTRODUCTORY) 80

3. Continuity. Water flows steadily through a pipe that narrows from A1 = 6 cm2 to
A2 = 2 cm2. If v1 = 0.5m/s, find v2.

14.4 Summary and Review
• Hydrostatics: ∇p = ρ g; p = p0 + ρgh in uniform gravity.

• Buoyancy: Fb = ρgVdisp; float/sink set by density comparison.

• Steady incompressible flow: continuity Av = const; Bernoulli along a streamline when
viscous losses are small.

14.5 Where We’re Heading Next
In Chapter 15 we step back and develop general tools—dimensional analysis and scaling—that
sharpen intuition and provide quick checks. These ideas pair well with fluids: scaling arguments
explain, for example, why small insects can walk on water whereas larger animals cannot.

Common Pitfalls

Assuming Bernoulli without its conditions (inviscid, along a streamline, negligible losses);
forgetting that pressure acts in all directions; mixing absolute and gauge pressure; treating
compressible high‑speed flows as incompressible.

Try in 60 seconds

Quick checks:

• Point to the pressure increase on Figure 14.1 and say why it’s linear.

• Use continuity to decide where the fluid speeds up in Figure 14.3.

• State one assumption behind Bernoulli in one sentence.



Part VII
Methods, Modelling, and Numerical

Simulation

Part VII Overview

We add cross‑cutting tools. Chapter 15 develops dimensional analysis and scaling. Chap-
ter 16 introduces practical numerical methods and modelling workflows that complement
analytic solutions.
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Chapter 15
Dimensional Analysis and Scaling

Dimensional analysis is a compact way to check equations and predict relationships before
calculating. Scaling arguments explain why the same equations look different for small and
large systems—why ants “feel” strong and elephants do not.

Learning Objectives

You will check dimensional consistency, build dimensionless groups (π groups) from vari-
ables and constants, and use scaling to estimate how quantities change with size.

Symbols at a Glance

[·] dimension of a quantity; common base dimensions: M mass, L length, T time. We use
∼ for “scales as.”

Analogy: Recipe Without Numbers

Dimensional analysis is like a recipe that only lists the kinds of ingredients. You can
already tell whether the cake is possible before measuring the amounts.

15.1 Consistency Checks
Dimensional homogeneity is the first line of defense: every term you add or compare must
represent the same kind of quantity. If one side of an equation has the units of force and the
other side has the units of energy, the equation cannot be right no matter what numbers you
plug in.

Everyday examples help:

• F = ma passes the test because [ma] = M L T−2 = [F ].

• v = v0 + at is fine: each term has L T−1.

• x = x0 + at2 is fine for constant acceleration, but x = x0 + at fails (wrong power of time).

• Arguments of sin(·), exp(·), log(·) must be dimensionless. Expressions like exp(t) are
illegal unless t was first non‑dimensionalized (e.g., t/τ).

Practical habits that pay off:

• Carry symbolic dimensions through your algebra before substituting numbers.

• Convert mixed measurement systems early (e.g., km/h to m/s) so dimensions remain
transparent.
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• When in doubt, rewrite a formula to isolate one quantity and check that the isolated
quantity has the right dimensions.

Lead‑in questions to ask when scanning a formula:

• Do all additive terms share the same dimensions?

• Do arguments of trig/exp/log functions come out dimensionless?

Unit‑Check Checklist

Keep this short list handy when reading or writing formulas:

• Left–right match: confirm [LHS] = [RHS].

• Additions: every term you add must share the same dimensions.

• Transcendentals: arguments of sin, cos, exp, log are dimensionless.

• Constants: numerical constants are dimensionless; if a parameter carries units, track
them.

• Mixed systems: convert early (e.g., km/h to m/s) and stick to one system.

• Isolate and check: solve for the target symbol and confirm its dimension.

15.2 Building Dimensionless Groups (by Hand)
Dimensionless groups are combinations of variables that carry no units. They often reveal the
natural control knobs of a problem and collapse data taken at different scales onto a single
curve.

Worked example (linear drag). Suppose the terminal speed vt depends on m (mass), g
(acceleration), and c (drag coefficient for Fd = cv). Write the dimensions

[vt] =
L
T , [m] = M, [g] = L

T2 , [c] =
M
T .

Seek vt ∼ magbcd. Matching exponents of M,L,T yields a = 1, b = 1, d = −1, so vt ∼ mg/c.
We did not need the exact numerical constant to know the form.

For quadratic drag Fd = 1
2ρCDAv

2, momentum exchange with the fluid sets the scale; vt
should grow with weight and shrink with fluid density and cross‑section. Try vt ∼ (mg/ρA)1/2,
consistent with [ρA] = M/L.

Reading data with π groups. If a measured quantity Y depends on X1, . . . , Xn, form π
groups πi and plot one against another. A flat cloud becomes a tight curve when the right
non‑dimensional variables are used.

End‑to‑End Example: Drag on a Sphere
We expect the steady drag force FD on a sphere to depend on fluid density ρ, dynamic viscosity
η, characteristic length L (diameter), and speed v. List dimensions

[FD] = M L T−2, [ρ] = M L−3, [η] = M L−1 T−1, [L] = L, [v] = L T−1.

There are n = 5 variables and k = 3 base dimensions, so expect n−k = 2 independent π groups.
Choose repeating variables (ρ, v, L) (they span M,L,T). Build

π1 =
FD

ρv2L2
(dimensionless drag coefficient CD), π2 =

ρvL

η
(Reynolds number Re).
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The Buckingham π–theorem says π1 = f(π2), i.e.

CD = f(Re)

which is the classic empirical relationship: in creeping flow (small Re), CD ∼ 24/Re (Stokes);
at larger Re, CD flattens to an O(1) constant. The moral: the dimensionless plot CD vs. Re
collapses experiments of different sizes and speeds.

15.3 The Pendulum Period (Dimensional Guess)
At small angles, a simple pendulum’s period T depends primarily on gravity g and length L;
mass and small‑amplitude do not matter. With [T ] = T, [g] = L T−2, and [L] = L, the only
combination with time units is

T ∼

√
L

g
.

The exact solution supplies the constant 2π, but the shape T ∝ L1/2 falls straight out of
dimensions. The message is practical: long pendulums swing slowly; short ones swing quickly.
If a prediction violates this by suggesting T ∝ L, dimensions flag a mistake before you compute.

As shown in Figure 15.1, a log–log plot of T versus L has slope 1/2.

10−0.410−0.310−0.210−0.1 100 100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8
10−0.2

100

100.2

100.4

slope = 1/2

L [arb]

T
[a

rb
]

Log–log scaling: T ∼ L1/2

Figure 15.1: On log–log axes, power laws become straight lines; the slope is the exponent.

15.4 Quick π–Theorem Workflow
When many variables appear, the Buckingham π–theorem says you can rewrite a relationship
among n variables with k base dimensions as a relation among n−k independent dimensionless
combinations (π groups). A practical 4‑step recipe:

1. List variables and their dimensions.

2. Choose k repeating variables spanning the base dimensions.

3. Build n− k independent π groups (products that come out dimensionless).

4. Write a relation among the π’s; test/fit with data or limiting cases.

Lead‑in example: drag coefficient CD is already dimensionless; Reynolds number Re =
ρvL

η
distinguishes flow regimes.
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Picking Repeating Variables

Choose k repeating variables that span the base dimensions (e.g., M,L,T) and are natural
controls rather than outcomes. In many fluid problems (ρ, v, L) serve well, yielding Re =
ρvL

η
. For gravity‑wave or ship‑model studies, include g and build the Froude number

Fr = v√
gL

alongside Re.

15.5 Scaling Intuition
If length scales by λ, areas scale by λ2, volumes by λ3. Weight scales like λ3 but cross‑sectional
strength like λ2—one reason small creatures seem “stronger” for their size. In fluids, Re ∝ L
at fixed v, ρ, η—bigger systems more easily become turbulent. On free surfaces (waves, ships),
the gravity–inertia balance is captured by Froude Fr = v√

gL
; model tests match Fr to preserve

wave patterns even if Re cannot be matched simultaneously (see Chapter 14).

Worked Example: Matching a Wind-Tunnel Model

A full car of length Lfull = 4.5m cruising at vroad = 30m/s in air (ρ ≈ 1.2 kg/m3,
µ ≈ 1.8 × 10−5 Pa s) runs at Refull = ρvroadLfull/µ ≈ 9.0 × 106. A 1:5 scale model has
Lmodel = 0.90m. To match Re you must increase the tunnel speed to

vmodel =
Refull µ

ρLmodel
≈ 150m/s,

roughly Mach 0.45. If the tunnel is limited to 60m/s, the achievable Reynolds number
is Remodel ≈ 3.6 × 106, four times smaller. Measurements still trend correctly, but you
must apply a scaling correction (or use a denser/colder fluid) before quoting road data.
Figure 15.2 sketches the geometry and the Reynolds-number bookkeeping.

full car

Lfull = 4.5m

vroad = 30m/s

Lmodel = 0.90m

1:5 scale model

Refull ≈ 9.0× 106
match ⇒ vmodel ≈ 150m/s

60m/s ⇒ Remodel ≈ 3.6× 106

vmodel?

Figure 15.2: Scaling a 1:5 model: matching Reynolds numbers demands vmodel ≈ 150m/s.
Lower tunnel speeds mean lower Re and require corrections.

15.6 Exercises
Short problems to practice and check:

1. Check it. Verify that kinetic energy K = 1
2mv2 has units of work.

2. Pendulum. Use dimensions to guess how the period depends on L and g.

3. Drag guess. For quadratic drag, argue that vt ∼
√
mg/(ρA).
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15.7 Summary and Review
A quick checklist before moving on:

• Dimensional consistency is a must‑have filter for equations.

• π groups reduce variables to dimensionless combinations.

• Scaling clarifies how size changes behavior; power laws show straight lines on log–log plots.

15.8 Where We’re Heading Next
In Chapter 16 we add simple numerical methods and modelling workflows to turn equations
into runnable predictions, with practical checks for accuracy, stability, and energy behavior.

Common Pitfalls

Confusing units with dimensions; mixing measurement systems mid‑problem; forgetting
to report dimensionless combinations; choosing repeating variables that do not span base
dimensions.

Try in 60 seconds

Quick checks:

• List the dimensions of g, ρ, and dynamic viscosity η.

• If length doubles, how do mass and surface area scale? Explain.



Chapter 16
Numerical Methods for Newtonian
Systems

Analytic solutions are wonderful—but many problems need approximate time‑stepping. We
discretize time, update positions and velocities, and watch accuracy/stability as we go.

Learning Objectives

You will discretize an ODE in time, implement simple updates (explicit Euler,
semi‑implicit/symplectic Euler), and read stability/accuracy effects from step size.

Symbols at a Glance

∆t time step, tn = n∆t, xn ≈ x(tn), vn ≈ v(tn).

Analogy: Frame‑by‑Frame Animation

Instead of a continuous movie, draw the next frame from the current one using a simple
rule. Smaller frame jumps (∆t) make smoother motion.

16.1 Discretizing Time
For ẋ = f(x, t), explicit Euler is xn+1 = xn+f(xn, tn)∆t. For mechanics, the first‑order system

ẋ = v, v̇ = a(x, v, t)

updates as
vn+1 = vn + a(xn, vn, tn)∆t, xn+1 = xn + vn∆t.

The semi‑implicit/symplectic variant uses the new velocity in the position update: xn+1 =
xn + vn+1∆t—often more stable for oscillations.

Terminology: the local truncation error (error made in one step assuming perfect input)
is O(∆t2) for Euler; accumulated global error over an interval is O(∆t). Halving ∆t should
roughly halve the global error for first‑order methods (see Appendix Appendix E).

Before Figure 16.1, recall the schematic from Chapter 2: staircase vs. smooth.
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Figure 16.1: Schematic comparison: exact smooth curve vs. explicit Euler steps.

16.2 Accuracy and Stability
Smaller ∆t typically improves accuracy (local error ∼ ∆t2 for Euler; global ∼ ∆t). For oscil-
latory or stiff problems, naive Euler can blow up; symplectic Euler often behaves qualitatively
better for conservative systems.

Linear stability lens. For the test equation ẏ = λy with <(λ) < 0, explicit Euler gives
yn+1 = (1+λ∆t)yn. This decays only if |1+λ∆t| < 1, which bounds ∆t. For oscillations (purely
imaginary λ), |1+iω∆t| > 1 so Euler grows—explaining energy drift. Structure‑preserving (sym-
plectic) schemes keep the phase‑space area and tend to bound energy oscillations in Hamiltonian
systems.

A Concrete Example: Simple Harmonic Oscillator
Consider ẍ+ ω2x = 0 with ω = 1, x(0) = 1, v(0) = 0 so the exact solution is x(t) = cos t. The
total energy E = 1

2(v
2 + x2) should stay constant.

Before Figure 16.2, keep in mind what “good” looks like: a nearly horizontal energy trace.
A steadily rising or falling trace means the method is injecting or removing energy.
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Energy behavior for SHO (schematic)

Euler (drift)
Symplectic (bounded)

Figure 16.2: For the SHO, explicit Euler tends to drift in energy, while symplectic Euler nearly
conserves it (oscillates around the true constant).
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Worked Example: Symplectic Euler Tames a Pendulum

A 1m pendulum released from 15◦ obeys θ̈ + θ = 0 (small-angle). Step it for 10 s with
∆t = 0.1 s. Explicit Euler updates θn+1 = θn + ωn∆t, ωn+1 = ωn − θn∆t; symplectic
Euler uses ωn+1 = ωn− θn∆t, then θn+1 = θn+ωn+1∆t. Both are first order, yet explicit
Euler’s energy triples while symplectic Euler keeps it near the initial E0 ≈ 3.4 × 10−2.
See Figure 16.3 for the angle history and energy comparison.

16.3 Practical Workflow and Checks
Simple habits raise confidence:

• Start coarse, then halve ∆t and compare: stable results should converge.

• Track conserved or monotone quantities (e.g., energy in conservative systems) as qualita-
tive checks.

• Beware floating‑point roundoff with very small ∆t or huge step counts; compare against
an analytic or high‑accuracy reference when possible.
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8 · 10−2

0.1

t [s]

E
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Pendulum energy vs. time (schematic)

explicit Euler
symplectic Euler

Figure 16.3: For a small-angle pendulum, explicit Euler tends to inject energy (rising trace),
while symplectic Euler keeps energy nearly constant (small bounded oscillation).

Error shrinks as ∆t shrinks. On log–log axes, first‑order global error curves are straight
lines with slope one, as shown in Figure 16.4.
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Figure 16.4: Both explicit and symplectic Euler have global error that scales ∝ ∆t; the sym-
plectic variant often enjoys a smaller constant for oscillatory problems.

16.4 Worked Python Examples
Short, self‑contained scripts illustrate how the updates look in code. You can copy–paste them
to a file and run with any Python 3.x. We annotate each step so the mapping to the math is
clear.

Simple Harmonic Oscillator: Euler vs. Symplectic Euler
We integrate ẍ+ x = 0 for t ∈ [0, 20] with ∆t = 0.05 and compare energies.

Python: SHO — Euler vs. Symplectic

# Simple harmonic oscillator: x'' + x = 0
# Compare explicit Euler and symplectic Euler on energy behavior

import math

def euler_sho(x0=1.0, v0=0.0, dt=0.05, t_end=20.0):
x, v = x0, v0
xs, vs, Es = [], [], []
t = 0.0
while t <= t_end + 1e-12:

# Energy E = 0.5*(v^2 + x^2) should be constant for exact solution
Es.append(0.5*(v*v + x*x))
xs.append(x); vs.append(v)
# Explicit Euler updates use acceleration a = -x evaluated at (x_n, v_n)
a = -x
v = v + a*dt # v_{n+1} = v_n + a_n dt
x = x + v*0.0 + (v - a*dt)*dt # equivalent to x_{n+1} = x_n + v_n dt
# (written this way to highlight it's the old v; compact form below)
# x = x + vs[-1]*dt
t += dt

return xs, vs, Es

def symplectic_euler_sho(x0=1.0, v0=0.0, dt=0.05, t_end=20.0):
x, v = x0, v0
xs, vs, Es = [], [], []
t = 0.0
while t <= t_end + 1e-12:

Es.append(0.5*(v*v + x*x))
xs.append(x); vs.append(v)
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# Symplectic Euler uses new v to update x; still a = -x at the start
a = -x
v = v + a*dt # v_{n+1} = v_n + a_n dt
x = x + v*dt # x_{n+1} = x_n + v_{n+1} dt
t += dt

return xs, vs, Es

if __name__ == "__main__":
# Run both methods and print final energies for a quick comparison
_, _, E_eu = euler_sho()
_, _, E_sy = symplectic_euler_sho()
print(f"Euler final E: {E_eu[-1]:.6f} (start {E_eu[0]:.6f})")
print(f"Symplec final E: {E_sy[-1]:.6f} (start {E_sy[0]:.6f})")

You should observe Euler’s energy drifting noticeably while the symplectic method oscillates
around the initial value.

Projectile with Linear Drag (Component Form)
We model m ˙⃗v = F⃗ = 〈0,−mg〉−c v⃗ with m = 1, g = 9.81, c = 0.2. This shows how to structure
vector updates.

Python: 2D Projectile with Linear Drag

# 2D projectile under linear drag: v' = g - (c/m) v
# Semi-implicit (symplectic) Euler on velocity; then update position

import math

def projectile_drag(x0=(0.0, 0.0), v0=(20.0, 16.0), g=9.81, c=0.2, m=1.0,
dt=0.02, t_end=3.0):

x, y = x0
vx, vy = v0
traj = [] # store (t, x, y, vx, vy)
t = 0.0
while t <= t_end + 1e-12:

traj.append((t, x, y, vx, vy))
# Acceleration components from gravity and linear drag
ax = -(c/m)*vx
ay = -g - (c/m)*vy
# Update velocities first (symplectic-like)
vx = vx + ax*dt
vy = vy + ay*dt
# Then update positions using the new velocities
x = x + vx*dt
y = y + vy*dt
t += dt
# Stop if projectile hits the ground (simple termination)
if y < 0.0:

break
return traj

if __name__ == "__main__":
data = projectile_drag()
# Show a few samples to verify the trajectory trends
for k in range(0, len(data), max(1, len(data)//5)):

t, x, y, vx, vy = data[k]
print(f"t={t:4.2f} x={x:6.2f} y={y:6.2f} vx={vx:6.2f} vy={vy:6.2f}")

Both examples follow the same state‑update pattern used throughout the book; only the
acceleration function changes with the physics.
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16.5 Exercises
Practice small steps and comparisons.

1. Euler step. For ẍ = −ω2x with ω = 1, x0 = 1, v0 = 0, ∆t = 0.1, compute (x1, v1) by
explicit Euler and by symplectic Euler.

2. Step effect. Halve ∆t and compare x(1) against the exact cos 1.

16.6 Summary and Review
A quick checklist before moving on:

• Explicit Euler: easy but only first‑order accurate and can be unstable.

• Symplectic Euler: similar cost, better qualitative behavior for Hamiltonian systems.

• Smaller ∆t improves accuracy but increases cost.

16.7 Where We’re Heading Next
These numerical tools support many chapters ahead and pair naturally with the math appen-
dices. For a compact reference of methods and stability/error heuristics, see Appendix E.

Common Pitfalls

Mismatching x and v updates; forgetting to evaluate accelerations at the correct state;
confusing local with global error; using too large ∆t.

Try in 60 seconds

Quick drills:

• Write the symplectic Euler update for x and v explicitly.

• For ẍ = −x, estimate x(0.2) with ∆t = 0.1.



Epilogue — What Comes After
Newtonian Physics?

Newtonian mechanics is astonishingly successful. On everyday scales—with speeds much less
than the speed of light, moderate gravitational fields, and objects large enough to ignore quan-
tum granularity—it predicts motion with crisp accuracy and remarkable economy. Yet nature
stretches beyond these conditions. Here is a compact map of where Newtonian ideas bend and
how modern physics extends them.

Where It Breaks
• Very fast (v ∼ c). At speeds approaching the speed of light, time dilates and lengths

contract. Newton’s velocity addition and absolute time fail.

• Very strong gravity / very large scales. Near massive bodies or across cosmological
distances, space and time curve. Newton’s instantaneous action at a distance is replaced
by geometry.

• Very small (atomic and subatomic). Energy comes in quanta, particles behave like waves,
and measurement itself carries probabilistic structure.

Three Great Extensions
• Special Relativity (Einstein, 1905). Mechanics and electromagnetism share the same

speed limit c. Space and time form spacetime; energy and momentum combine into
four‑vectors. Newton’s second law survives in relativistic dress, and Newtonian results
reappear when v � c.

• General Relativity (Einstein, 1915). Gravity is curved spacetime. Free fall is motion
along geodesics. Newton’s law of gravitation emerges as a weak‑field, low‑speed approxi-
mation.

• Quantum Mechanics (1920s–). States are waves in Hilbert space; observables are op-
erators; outcomes are probabilistic with strict rules. Classical mechanics returns in the
limit of large quantum numbers or small h̄ (the correspondence principle).

How the Pieces Fit
In practice, physics is a set of overlapping maps, each valid on its domain with clean bridges
between them:

• Classical (Newtonian) for everyday speeds, weak gravity, and macroscopic objects.

• Relativistic mechanics for fast motion or precise timing (GPS satellites, particle beams).
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• Quantum mechanics for atoms, molecules, and materials; quantum field theory for particle
physics.

• Classical field theories (fluids, elasticity, electromagnetism) describe collective behavior
where particle details are hidden.

Each newer theory contains Newtonian mechanics as a limiting case. Learning to recognize
which map applies—and when to change maps—is a professional superpower.

What We Still Don’t Have
Despite a century of progress there is no single, complete theory of everything (TOE). The
Standard Model of particle physics and general relativity coexist but resist unification. Dark
matter and dark energy signal phenomena beyond what current theories explain. This is not a
failure; it is an invitation.

Takeaway
Newton’s framework remains the right starting point for most engineered and natural systems
you will encounter. It is also the common language you’ll use when stepping into relativity,
quantum theory, or continuum descriptions. Master the Newtonian map; then explore the
others with confidence, knowing where each begins and where the next takes over.



Part VIII
Mathematics for Newtonian Mechanics

Appendix Overview

A concise toolkit for results used throughout the book.

• Calculus for motion (limits, derivatives, integrals, Taylor tools) complements
kinematics and dynamics in Chapters 3, 4 and 8.

• Vectors and linear algebra (components, dot/cross, matrices) support multi‑D
motion and forces in Chapters 5, 7 and 11.

• Multivariable basics (grad, div, curl; line/surface integrals) tie into fields and
potentials in Chapter 12.

• ODE essentials (existence, stability, linear systems) back up modelling across
Chapters 13 and 16.

• Numerics quick reference (floating‑point, step‑size, error) complements the
methods in Chapter 16.

Each section is a quick reference with minimal proofs and pointers back to where the
ideas are first used in the main text.
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Appendix A
Calculus Essentials for Motion

This appendix gathers exactly the one–variable calculus tools used throughout the book, with
pictures first and formulas second. If you want a memory hook: slope means rate; area means
accumulation. When in doubt, re‑draw the picture.

Learning Objectives

You can read limits and continuity from a graph, compute derivatives with core rules, use
small Taylor expansions, evaluate definite integrals, and apply the Fundamental Theorem
of Calculus (FTC) to turn rates into totals.

Symbols at a Glance

t time; x(t) position; v(t) = ẋ velocity; a(t) = v̇ acceleration; dx differential;
∫
f dt

integral.

Analogy: Slope and Paint

Slope is how steep the road is at your feet; area is how much paint it takes to cover a
fence of height f(t) as you walk from t = a to t = b.

A.1 Differentiation
We start with precise definitions and then build geometric intuition.

Definition 1 (First Derivative). Let f be defined on an interval containing t0. We say f is
differentiable at t0 with derivative f ′(t0) if the limit

f ′(t0) = lim
h→0

f(t0 + h)− f(t0)

h

exists. Intuitively, f ′(t0) is the slope of the tangent line to the graph of f at t0; in mechanics,
it is a rate (e.g., velocity).

Definition 2 (Second Derivative). If f ′ exists in a neighborhood of t0 and is differentiable at
t0, the second derivative is

f ′′(t0) = lim
h→0

f ′(t0 + h)− f ′(t0)

h
.

Geometrically, f ′′(t0) measures curvature (how the slope changes). In kinematics, x′′(t) = a(t)
is acceleration (Chapter 3).
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Before Figure A.1, remember: f ′ is slope and f ′′ is curvature.
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First vs. second derivative (schematic)

Figure A.1: Schematic: f ′ is the slope of the tangent; f ′′ describes how the slope changes
(curvature).

A.2 Derivative Rules You Actually Use
We differentiate to turn position into velocity (Chapter 2). The rules you reach for most often are
the ones that let you simplify expressions quickly without losing sight of the physical meaning
(rate of change in time):

Lead‑in: here are the core rules, with examples you can apply immediately.

• Linearity: (af + bg)′ = af ′ + bg′. Example: d
dt(2t+ 3 sin t) = 2 + 3 cos t.

• Product: (fg)′ = f ′g + fg′. Example: d
dt(t sin t) = sin t+ t cos t.

• Chain: (f ◦ g)′ = (f ′ ◦ g) g′. Example: d
dt sin(t2) = cos(t2) · 2t.

Small‑angle reminders we actually use (Chapters 6 and 13):

• For |θ| � 1 (radians): sin θ ≈ θ, cos θ ≈ 1− θ2

2 . Always use radians for calculus with trig.

A.3 Limits and Continuity
Intuitively, f(t) approaches L as t → t0 if we can make f(t) as close to L as we like by
taking t sufficiently close to t0. Continuity at t0 means the graph has no jump or hole there:
limt→t0 f(t) = f(t0).

In practice, we rely on two habits:

• Look left and right: do one‑sided limits agree? If yes and the point value matches, the
function is continuous.

• Replace scary algebra with a picture: zoom into the point on the graph. If the zoom looks
like a straight line, a derivative likely exists.

Before Figure A.2, recall: the derivative is the limit of secant slopes.
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0.5

1

1.5

2

tangent

t

x

Derivative as a limit of secants

Figure A.2: Secants converge to the tangent at a point. Bold secants from the left. Dashed
secant from the right.

A.4 Taylor Approximations (Local Models)
Near a point t0, f(t) is well‑approximated by a low‑order polynomial built from derivatives at
t0. Think “best straight line,” then “best gentle bend.” For smooth f ,

f(t) ≈ f(t0) + f ′(t0)(t− t0) +
1
2f

′′(t0)(t− t0)
2.

Engineers read this as “straight line + gentle bend.” In Chapter 13, small‑angle pendulum
motion is nothing but a Taylor approximation to the sine.

Before Figure A.3, remember: approximations are local. Step too far, and the picture bends
away.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−2

0

1st order

2nd order

t

f
(t
)

Function vs. first/second order approximations

Figure A.3: Local linear and quadratic models of a smooth function; good near t0 = 0, worse
as you move away.

A.5 Integration
First a general definition, then a picture.

Definition 3 (Riemann–Stieltjes Integral). Let f be bounded on [a, b] and α be an increasing
function on [a, b]. For a partition P : a = t0 < · · · < tn = b and sample points ξi ∈ [ti−1, ti],
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form sums
S(P, ξ; f, α) =

n∑
i=1

f(ξi)
(
α(ti)− α(ti−1)

)
.

If these sums converge to a common limit as the mesh ‖P‖ → 0 (independent of choices of ξi),
we call the limit the Riemann–Stieltjes integral and write∫ b

a
f dα.

When α(t) = t, this reduces to the usual Riemann integral
∫ b
a f(t) dt.

Before Figure A.4, keep in mind: the Riemann–Stieltjes sum
∑

f(ξi)∆αi weights samples
by increments of an increasing integrator α. Equal steps in α generally mean uneven steps in t.

0

2

4

6 equal ∆α → uneven ∆t

α
(t
)

Riemann–Stieltjes: weights ∆αi induce nonuniform t–intervals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.5

1

sum f(ξi)∆αi

t

f
(t
)

Figure A.4: Schematic: equal weights in α select nonuniform time intervals. Summing f times
∆α generalizes “area under a curve.”

A.6 Fundamental Theorems (How They Fit)
The two operations differentiation and integration are inverses under suitable assumptions. We
collect the relationships used throughout the book and visualize the area–as–accumulation idea.

• Fundamental Theorem of Calculus (part I). If F ′(t) = f(t) and f is integrable,∫ b

a
f(t) dt = F (b)− F (a).

• Fundamental Theorem of Calculus (part II). If f is integrable and sufficiently nice,

d
dt

∫ t

a
f(τ) dτ = f(t).

• Riemann–Stieltjes with differentiable integrator. If α is differentiable with α′ ∈ L1, then∫ b

a
f dα =

∫ b

a
f(t)α′(t) dt,
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and the Leibniz rule extends to

d
dt

∫ t

a
f(τ) dα(τ) = f(t)α′(t)

when the hypotheses hold (see also Chapter 8).

• Integration by parts mirrors the product rule: for suitable f, g,∫ b

a
f dg = f(b)g(b)− f(a)g(a)−

∫ b

a
g df.

Before Figure A.5, keep the picture in mind: the integral is the signed area. As introduced
in Chapter 3, area under a(t) gives the change in v, and area under v(t) gives the change in x.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.8

1

1.2

displacement ∆x

t

v
(t
)

Area under v(t) equals displacement

Figure A.5: Shaded area under v(t) between two times equals displacement.

A.7 Integrals and the FTC (Mechanics Lens)
The Fundamental Theorem of Calculus (FTC) ties rates to totals. If F ′(t) = f(t) and f is
integrable on [a, b], then ∫ b

a
f(t) dt = F (b)− F (a).

In mechanics: v = ẋ so x(b) − x(a) =
∫ b
a v(t) dt (displacement is area under v); a = v̇ so

v(b)− v(a) =
∫ b
a a(t) dt. Piecewise‑smooth signals are fine: add the areas across pieces.

A.8 Worked Examples
The following presents worked examples to illustrate the relationship between differentiation
and integration. First, application of integration to a velocity curve.
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Worked Example: From v(t) to x(t)

We know from the Fundamental Theorem of Calculus that displacement is the area under
the velocity curve. Suppose

v(t) = 2 + 0.8 t for 0 ≤ t ≤ 3, x(0) = 1.

Then the displacement over [0, 3] is∫ 3

0
v(t) dt =

∫ 3

0

(
2 + 0.8 t

)
dt =

[
2t+ 0.4 t2

]3
0
= 6 + 3.6 = 9.6.

Hence the new position is x(3) = x(0) + 9.6 = 10.6. If instead we only knew acceleration
a(t), we could integrate twice: first get v from a with v(0), then get x from v with x(0).

Second, application of differentiation to a position curve.

Worked Example: From x(t) to v(t)

Differentiation turns position into velocity. Suppose

x(t) = 1 + 2t+ 0.4 t2 for t ≥ 0.

Then by definition v(t) =
dx
dt = 2+0.8 t. If you want the acceleration as well, differentiate

once more to get
a(t) =

dv
dt = 0.8 (a constant).

As a quick check with the previous example, integrating this v(t) from 0 to 3 reproduces
the same displacement ∆x = 9.6.

A.9 Techniques We Actually Use
Lead‑in: a tiny toolkit goes a long way in mechanics.

• Substitution: straighten a composition. Example:
∫
2t cos(t2) dt =

∫
cosu du = sinu+ C

with u = t2.

• Integration by parts: trade derivative for antiderivative. Example:
∫
tet dt = tet−

∫
et dt =

et(t− 1) + C.
Common Pitfalls

Confusing local linearity with global behavior; forgetting that Taylor expansions are local;
mixing up displacement (signed area) with distance (always non‑negative); dropping the
chain rule in composites; integrating with wrong limits.

Try in 60 seconds

Quick checks:

• Slope vs. area. Which graph quantity gives ∆x from a(t)? From v(t)?

• Small angle. Use sin θ ≈ θ to linearize a pendulum near rest (see Chapter 13).

• FTC check. If F ′(t) = f(t), what is d
dt
∫ t
0 f(τ) dτ?



Appendix B
Vectors and Linear Algebra Essentials

This appendix gives only the vector tools we actually use in the main text. Pictures lead; for-
mulas follow. Keep three verbs in mind: add (combine), project (compare), rotate (re‑express).

Learning Objectives

You can add and scale vectors, compute dot and cross products with geometric meaning,
project one vector onto another, read simple rotation matrices in 2D, and connect torque
and area to cross products.

Symbols at a Glance

a, b, r,v vectors (bold); ‖a‖ magnitude; û unit vector; a · b dot product; a × b cross
product (3D); R(θ) 2D rotation matrix.

Analogy: Shadows and Spins

The dot product is a shadow—how much one arrow lies along another. The cross product
is a spin cue—how big the parallelogram is and which way a screw would turn.

B.1 Vectors and Basic Operations
A vector in the plane is an ordered pair a = (ax, ay); in space, a = (ax, ay, az). Add components
to add vectors; scale components to scale a vector. In 2D, ‖a‖ =

√
a2x + a2y; in 3D, ‖a‖ =√

a2x + a2y + a2z. The unit vector is â = a/‖a‖ when a 6= 0.
Before Figure B.1, recall: tip-to-tail addition is geometry you can see.

a

b

ba+ b

Figure B.1: Tip-to-tail addition: place b at the tip of a; the diagonal is a+ b.
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B.2 Dot Product and Projection
The dot product measures alignment: a · b = ‖a‖ ‖b‖ cosϕ, where ϕ is the angle between them.
Algebraically in 2D/3D, a · b = axbx + ayby(+azbz). The projection of a onto û is (a · û) û.

We use this for work in Chapter 8: W =
∫
F · dr—force along displacement.

Before Figure B.2, keep in mind: the dot is the signed length of the shadow of one vector
on another.

û

a

projûa
ϕ

Figure B.2: Projection: a · û = ‖a‖ cosϕ is the signed length of the shadow of a along û.

B.3 Cross Product, Area, and Torque
In 3D, a× b is perpendicular to both a and b, with magnitude ‖a× b‖ = ‖a‖ ‖b‖ sinϕ, equal
to the area of the parallelogram spanned by a and b. Right‑hand rule sets direction. Torque in
Chapter 11 uses this idea: τ = r × F .

Before Figure B.3, visualize area and normal as two sides “sweeping” a sheet and a thumb
pointing up.

a

b a× b

Figure B.3: Area and normal: ‖a×b‖ equals the parallelogram area; direction by the right‑hand
rule.

B.4 Rotations and Change of Basis (2D)
Definition 4 (Matrix). A (real) matrix of size m× n is a rectangular array of real numbers

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .

It represents the linear map that sends a column vector x ∈ Rn to Ax ∈ Rm.

In the plane, rotation by angle θ is

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
, a′ = R(θ)a.

Geometrically, R(θ) turns every arrow by θ (angles in radians for calculus). These orthonormal
rotations preserve lengths and dot products; detR(θ) = 1. Change of basis simply means
describing the same arrow with a different set of unit vectors—numbers change, the arrow does
not.
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Before Figure B.4, note how both the components and the drawn arrow pivot together; keep
labels away from overlap.

êx

êy

a

ê′x
ê′y

a′

θ

Figure B.4: 2D rotation: a′ = R(θ)a. The arrow and the basis rotate together; components
change accordingly.

Worked Example: 2D Rotation via Matrix

Rotate a = (1, 1) by θ = 45◦. With

R
(
π
4

)
=

[√
2
2 −

√
2
2√

2
2

√
2
2

]
, R

(
π
4

)
a =

[√
2
2 −

√
2
2√

2
2 +

√
2
2

]
=

[
0√
2

]
.

The vector turns by 45◦ to lie on the positive y‑axis with length ‖a‖ =
√
2 preserved.

a
a′

45◦

Worked Example: Projection Length

Let a = (3, 1) and û = ( 1√
2
, 1√

2
). The projection length of a onto û is

a · û = 3 · 1√
2
+ 1 · 1√

2
= 4√

2
= 2

√
2,

so the projected vector is (2
√
2) û.

û

a

projûa
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Worked Example: Area and Torque

Let a = (2, 0, 0) and b = (0, 1, 0). The parallelogram area is ‖a× b‖ = ‖(0, 0, 2)‖ = 2. If
r = (2, 0, 0) m and F = (0, 5, 0) N, then τ = r × F = (0, 0, 10) N·m points along the
+z axis (right‑hand rule).

r

F

τ

Common Pitfalls

Mixing up magnitudes and components; forgetting unit vectors in projections; using
degrees in formulas that expect radians; right‑hand rule sign errors for a cross product;
thinking a change of basis changes the underlying arrow.

Try in 60 seconds

Quick checks:

• Quick dot. Compute a · b for a = (3, 1), b = (2, 2) and interpret the sign.

• Shadow length. For a = (1, 2) on û = ( 1√
2
, 1√

2
), find projûa.

• Right‑hand check. If a = (1, 0, 0) and b = (0, 1, 0), what is a×b and along which
axis does it point?



Appendix C
Multivariable Calculus Lite

We collect just the multivariable ideas needed for fields and potentials: gradient (steepest as-
cent), directional derivatives (rate along a direction), and a light touch on divergence, curl, and
line integrals.

Learning Objectives

You can read gradients as arrows pointing uphill, compute directional derivatives, rec-
ognize conservative fields and recover a potential, and interpret divergence/curl qualita-
tively.

Symbols at a Glance

∇ gradient operator; ∇f gradient of scalar f ; ∇ · F divergence; ∇ × F curl; dℓ line
element; ϕ potential.

Analogy: Height Map

Think of f(x, y) as a landscape. The gradient is the arrow pointing straight uphill; its
length is how steep the slope is at your feet.

C.1 Gradient and Directional Derivative
For a scalar field f : Rn → R, the gradient

∇f =

∂f/∂x1...
∂f/∂xn


points in the direction of steepest increase. The directional derivative along a unit vector û is

Dûf = ∇f · û,

the instantaneous rate of change of f in the û direction.
Before Figure C.1, remember: longer arrows mean steeper uphill.
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Contours and gradient (schematic)

Figure C.1: Contours of a bowl-shaped function with a few gradient arrows: they point uphill
and grow with steepness.

Rays in a Graded Index (Qualitative)

In media where the refractive index n(x, y) varies smoothly, light rays bend toward higher
n. A compact vector statement is d

ds(n ŝ) = ∇n, where ŝ is the unit tangent along the
ray and s is arclength. You do not need to compute this here—read it as “rays drift
toward increasing n.”

bends toward higher n

Figure C.2: A graded index: shading suggests higher n to the right; a ray curves toward that
side.

C.2 Conservative Fields and Potentials
A vector field F is conservative if it is the gradient of a potential ϕ: F = ∇ϕ (potential defined
up to an additive constant). Then line integrals are path‑independent and∫

C
F · dr = ϕ(end)− ϕ(start).

In 2D/3D on simple regions, a sufficient test is that ∇ × F = 0 and the region is simply
connected. In Chapter 8, this is the condition for a force to admit a potential energy; in
Chapter 12, F = −∇U with U = −GMm/r.

C.3 Divergence and Curl (Qualitative)
The divergence ∇·F measures sources and sinks; positive divergence looks like fluid expanding
from a point. The curl ∇× F measures local rotation: a nonzero curl makes tiny paddles spin.

Before Figure C.3, keep the pictures in mind: arrows spreading vs. arrows swirling.
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Divergence > 0 Curl ̸= 0

Figure C.3: Left: arrows spreading out (positive divergence). Right: arrows circling (nonzero
curl).

C.4 Line Integrals Along Paths
For a path C : r(t), a ≤ t ≤ b, the line integral of a vector field is∫

C
F · dr =

∫ b

a
F (r(t)) · r′(t) dt.

If F = ∇ϕ, the integral depends only on endpoints. Orientation matters: reversing the path
flips the sign.

Common Pitfalls

Confusing gradient direction with the direction to a particular point; forgetting to normal-
ize the direction in a directional derivative; assuming ∇×F = 0 everywhere automatically
makes a field conservative on domains with holes.

Try in 60 seconds

Quick checks:

• Quick grad. For f(x, y) = x2 + 3y2, compute ∇f at (1, 1) and the directional
derivative along (1, 1)/

√
2.

• Endpoint check. If F = ∇ϕ and a path goes from (0, 0) to (2, 1), which values
matter to the line integral?

• Swirl or source? Which picture indicates curl, which indicates divergence?



Appendix D
Ordinary Differential Equations
Essentials

We keep ODE tools lean and visual: how to read direction, how to separate variables, how inte-
grating factors tame linear equations, and how second‑order linear models (oscillators) behave.

Learning Objectives

You can solve simple separable and linear first‑order ODEs, interpret phase portraits for
second‑order systems, and connect forcing/damping with resonance and decay.

Symbols at a Glance

y′ =
dy
dt ; ẋ, ẍ time derivatives; parameters k, γ, ω0 for growth/damping/natural frequency;

ω driving frequency.

Analogy: Slope Field as Grass Arrows

Imagine a hillside covered with tiny arrows showing the local slope. A solution is a path
that always follows the arrows.

D.1 Reading Solutions from Direction (Slope) Fields
For a first‑order ODE y′ = f(t, y), a slope field sketches a short line segment of slope f(t, y) at
each grid point. Solutions trace curves tangent to these segments.

Before Figure D.1, note: for the logistic law y′ = y(1 − y), slopes depend only on y; below
y = 0 arrows point downward (negative), between 0 and 1 they tilt upward, and near y = 1
they flatten.
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Slope field (schematic) for y′ = y(1− y)

Figure D.1: Direction field for the logistic law: arrows tilt upward for 0 < y < 1 and flatten
near the carrying capacity y = 1.

D.2 Separable and Linear First‑Order ODEs

Separable: if y′ = g(t)h(y), rearrange dy
h(y)

= g(t) dt and integrate both sides. Linear: if

y′ + p(t)y = q(t), multiply by an integrating factor µ(t) = e
∫
p(t) dt to make (µy)′ = µq.

Worked Example: Growth with Carrying Capacity

Solve y′ = r y(1−y) for y(0) = y0 (units scaled so the capacity is 1). Separating variables
gives ∫ dy

y(1− y)
=

∫
r dt ⇒ ln y

1− y
= rt+ C.

Thus y

1− y
= Aert with A =

y0
1− y0

and

y(t) =
1

1 +
1− y0
y0

e−rt

which approaches 1 as t → ∞, matching the slope field in Figure D.1.

Worked Example: Integrating Factor

Solve y′ + 2y = e−t, y(0) = 0. The integrating factor is µ(t) = e
∫
2 dt = e2t. Then

d

dt

(
e2ty

)
= e2te−t = et

⇒

e2ty = et + C, and with y(0) = 0 we find C = −1. Therefore y(t) = e−t − e−2t .

D.3 Second‑Order Linear ODEs: Oscillations
The undamped oscillator ẍ+ω2

0x = 0 has sinusoidal solutions. Damping adds decay: ẍ+2γẋ+
ω2
0x = 0. Forced response adds a drive F0 cosωt and exhibits resonance near ω ≈ ω0 when
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damping is small.
Before Figure D.2, recall: phase portraits plot (x, ẋ); undamped orbits are closed; damping

spirals inward.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

0

1 undamped

damped

x

ẋ

Phase portrait: undamped (circle) vs. damped (spiral)

Figure D.2: Closed orbits (undamped) become inward spirals with damping; arrows would point
counterclockwise for ẍ+ ω2

0x = 0.

Before Figure D.3, keep in mind: damping flattens and broadens the resonance peak.
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Resonance curves: weak vs. moderate damping

ζ = 0.1
ζ = 0.3

Figure D.3: Forced oscillator amplitude (dimensionless) vs. drive frequency ratio Ω = ω/ω0 for
two damping ratios ζ.

D.4 Existence and Uniqueness (Statement)
If f and ∂f/∂y are continuous near (t0, y0) (Lipschitz in y suffices), then the initial value
problem y′ = f(t, y), y(t0) = y0 has a unique solution in some interval around t0. Practically:
well‑behaved right‑hand sides give a single trajectory through each point; discontinuities or
non‑Lipschitz points can lead to multiple or no solutions.

Common Pitfalls

Forgetting to divide by a function that can be zero when separating variables; dropping
the constant of integration; confusing transient (decaying) with steady‑state (driven)
parts; reading phase portraits without units or axes.
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Try in 60 seconds

Quick checks:

• Separate it. Solve y′ = 3y with y(0) = 2.

• IF quick. Solve y′ + y = 1; what is the long‑time limit?

• Read the portrait. On Figure D.2, is the motion clockwise or counterclockwise?
What changes if the sign in ẍ+ ω2

0x = 0 flips?



Appendix E
Numerical Methods Quick Reference

This appendix distills the discrete tools used across the book into one friendly place. Our aim
is intuition you can act on: what each update does, how accuracy improves with smaller steps,
and how to sanity‑check stability and energy behavior.

Learning Objectives

You can write and compare explicit vs. symplectic Euler updates, estimate error vs. step
size on a log–log plot, and spot energy drift vs. boundedness in conservative systems.

Symbols at a Glance

∆t step; tn = n∆t; xn ≈ x(tn); vn ≈ v(tn); local error O(∆tp+1), global error O(∆tp) for
order p.

Analogy: Shutter Speed

An integrator is like a camera filming motion. A large shutter time (big ∆t) makes blurry
frames and can miss fast wiggles; a small ∆t makes sharp frames but needs more battery.
Your goal is crisp enough without draining the battery.

E.1 Finite Differences and Euler Updates
For ẋ = f(x, t) at tn, the forward difference reads

xn+1 − xn
∆t

≈ f(xn, tn),

meaning “new minus old equals slope times step.” In mechanics we evolve the pair (x, v) via
ẋ = v and v̇ = a(x, v, t):

Explicit Euler: vn+1 = vn + a(xn, vn, tn)∆t,

xn+1 = xn + vn∆t.

Symplectic Euler: vn+1 = vn + a(xn, vn, tn)∆t,

xn+1 = xn + vn+1∆t.

“Order” counts how fast error shrinks as you shrink ∆t. Explicit Euler is first‑order and simple.
Symplectic Euler is also first‑order but uses the fresh velocity to update position, which makes a
big qualitative difference for conservative systems: it tends to bound energy instead of drifting.
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Worked Example: One SHO Step

For ẍ = −x with (x0, v0) = (1, 0) and ∆t = 0.1:

• Explicit Euler: a0 = −x0 = −1, so v1 = v0 + a0∆t = −0.1, x1 = x0 + v0∆t = 1.0.

• Symplectic Euler: same v1 = −0.1, but x1 = x0 + v1∆t = 0.99 (uses the new v).

After several steps, explicit Euler’s energy creeps; symplectic’s stays near constant.

E.2 Error vs. Step Size
On log–log axes, first‑order global error falls with slope 1. A practical recipe is to run with
∆t and with ∆t/2; the observed change estimates the error size. Before Figure E.1, keep that
slope‑1 picture in mind: halving ∆t roughly halves the error for order‑1 schemes.

10−0.9 10−0.8 10−0.7 10−0.6 10−0.5 10−0.4 10−0.3 10−0.2 10−0.1 100

10−0.5

100

slope ≈ 1

∆t
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Global error scales ∝ ∆t (illustrative)

order 1

Figure E.1: Illustrative error vs. step size on log–log axes.

E.3 Energy Behavior (Conservative Systems)
For ẍ+ω2

0x = 0, explicit Euler typically drifts in energy (frames “gain” or “lose” energy), while
symplectic Euler tends to oscillate around the constant true energy. When in doubt for long
conservative runs, pick the symplectic flavor.
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Figure E.2: Explicit Euler often drifts; symplectic Euler keeps energy bounded around the
truth.

E.4 Stability Sketches
For the test equation y′ = λy (the standard stability yardstick), explicit Euler is stable only if
|1 + λ∆t| < 1. For real λ < 0, this collapses to −2 < λ∆t < 0—too large a step turns decay
into blow‑up.
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stable

unstable unstable

s = λ∆t

Explicit Euler stability (real λ)

Figure E.3: On the real axis, explicit Euler is stable for −2 < λ∆t < 0.

When you lack a trusted reference answer, halve ∆t and check that results change by the
expected order and fall below a tolerance you set up front (units matter!).
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Figure E.4: A practical convergence probe: reduce ∆t until changes fall below a set tolerance.
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E.5 Quick Checks
A few habits that pay off in practice:

• Reduce ∆t and see if answers change by O(∆t) (order‑1) or faster.

• In conservative tests, monitor energy; prefer symplectic Euler for long runs.

• Keep units consistent; errors in scale can masquerade as “instability.”
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Choosing a Stepper: Quick Pros/Cons

When in doubt, this short list helps you pick and set expectations:

• Explicit Euler — simple, cheapest per step; first‑order; can drift in invariants
(energy); tight stability limits (Figure E.3).

• Symplectic Euler — same cost/order; uses new velocity; much better qualitative
energy behavior in conservative systems (Figure E.2).

• Defaults — mechanics with conserved energy: start symplectic; strongly
damped/short transients: either works with small enough ∆t.

• Safety — always halve ∆t once to gauge error (Figure E.4); watch units and scales.

Common Pitfalls

Confusing local and global error; trusting a single ∆t; updating x with the old v when
intending symplectic Euler; hidden unit mismatches.

Try in 60 seconds

• Write it. Write explicit and symplectic Euler steps for ẍ = −x.

• Order check. If ∆t halves and error halves, what order is your method?

• Energy probe. Which method would you pick to integrate a planet’s nearly
circular orbit?



Glossary

Short, alphabetized definitions for quick lookup. Cross‑links point to chapters where a concept
features prominently.

Acceleration Rate of change of velocity; in 1D a = v̇; see Chapter 3.

Angular acceleration Rate of change of angular velocity α = ω̇; see Chapter 11.

Angular momentum Rotational analogue of momentum; conserved in absence of external
torque; see Chapter 11.

Area (under a curve) Signed integral; area under v(t) gives displacement; see Chapter 3.

Buoyancy Upward force on a body in a fluid equal to the weight of displaced fluid; see Chap-
ter 14.

Center of mass (COM) Weighted average of position; system moves as if mass were concen-
trated at COM; see Chapter 10.

Coefficient of restitution Dimensionless measure of bounciness in collisions; ratio of relative
speeds after/before; see Chapter 10.

Conservative force One with path‑independent work and a potential U ; see Chapter 9.

Continuity equation Statement of conservation (e.g., mass) for a flowing medium; see Chap-
ter 14.

Damping ratio Dimensionless measure of damping strength ζ; relates to decay rate and qual-
ity factor; see Chapter 13.

Dot product Measure of alignment between vectors; work = F · dr; see Chapter 8.

Divergence Scalar measure of sources/sinks of a vector field; see Appendix C.

Energy Capacity to do work. Kinetic K = 1
2mv2; potential U depends on configuration; see

Chapters 8 and 9.

Force Interaction that changes motion; Newton’s second law
∑

F = ma; see Chapter 7.

Froude number Dimensionless ratio Fr = v/
√
gL comparing inertia to gravity in free‑surface

flows; see Chapter 15.

Gradient Vector of partial derivatives pointing uphill; see Appendix C.

Impulse Integral of force over time; changes momentum; see Chapter 10.

Inertia Resistance to changes in motion; quantified by mass; rotational counterpart is moment
of inertia.
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Line integral Integral of a vector field along a path; work; see Appendix C and chapter 8.

Matrix Rectangular array representing a linear map; rotations use R(θ); see Appendix B.

Moment of inertia Rotational inertia about an axis; appears in τ = Iα and Krot = 1
2Iω

2;
see Chapter 11.

Momentum Product of mass and velocity p = mv; conserved for isolated systems; see Chap-
ter 10.

Normal force Contact force perpendicular to a surface; appears in FBDs; see Chapter 7.

Numerical method Discrete scheme to approximate ODE solutions (e.g., Euler, symplectic
Euler); see Chapter 16 and appendix E.

Potential energy Stored capability of conservative forces; changes by negative work; see Chap-
ter 9.

Power Rate of doing work P = F · v; see Chapter 8.

Projection Component of one vector along another; dot product; see Appendix B.

Quality factor Dimensionless Q = 1/(2ζ); higher Q means slower decay; see Chapter 13.

Resonance Amplification when driving frequency matches a system’s natural frequency; see
Chapter 13.

Resultant Net vector sum, e.g., net force; see Chapter 7.

Reynolds number Dimensionless ratio Re = ρvL/η comparing inertia to viscosity; see Chap-
ter 15.

Rotational kinematics Angular position θ, velocity ω, acceleration α; see Chapter 11.

Slope Geometric meaning of derivative; tangent line slope; see Chapter 2 and appendix A.

Specific mechanical energy Energy per unit mass ε = 1
2v

2 + Φ; negative for bound orbits;
see Chapter 12.

Symplectic method Structure‑preserving time‑stepper for Hamiltonian systems; better long‑term
energy behavior; see Appendix E.

Torque Tendency to rotate: τ = r × F ; see Chapter 11.

Unit vectors Cartesian basis arrows êx, êy, êz of length 1 pointing along the coordinate axes;
see Appendix B.

Vector Quantity with magnitude and direction; added tip‑to‑tail; see Chapter 5 and ap-
pendix B.

Velocity Rate of change of position; see Chapter 3.

Work Energy transfer by force along a path: W =
∫
F · dr; see Chapter 8.



Index of Symbols

Alphabetical list of the most commonly used symbols. Units are indicated in brackets where
fixed by context.

A Area; cross‑sectional area (fluids, drag) [m2].

CD Drag coefficient (dimensionless).

E Total mechanical energy, E = K + U .

e Coefficient of restitution (dimensionless).

ε Specific mechanical energy per unit mass [J/kg].

F , F Force (scalar magnitude or vector) [N].

Fr Froude number Fr = v√
gL

(dimensionless).

g Gravitational acceleration near Earth (≈ 9.81m/s2).

I Moment of inertia about a specified axis [kg·m2].

K Kinetic energy, K = 1
2mv2 [J].

L Angular momentum [kg·m2/s].

m Mass [kg].

µ, µs, µk Coefficient(s) of friction (dimensionless; static/kinetic).

µ (grav.) Gravitational parameter µ = GM [m3/s2].

p, p Linear momentum p = mv [kg·m/s].

P Power, P = F · v [W].

Q Quality factor Q = 1/(2ζ) (dimensionless).

R(θ) 2D rotation matrix (see Appendix B).

Re Reynolds number Re =
ρvL

η
(dimensionless).

r = (x, y, z) Position vector [m].

t Time [s]; tn = n∆t in numerics.

∆t Time step (see Appendix E).

U Potential energy (context‑dependent) [J].
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v, v Speed/velocity (scalar/vector) [m/s].

W Work; weight (W = mg) by context [J] or [N].

x, y, z Cartesian coordinates [m].

α Angular acceleration [rad/s2].

η Dynamic viscosity [Pa·s].

ϕ Potential (scalar field) (see Appendix C).

ρ Mass density [kg/m3].

ζ Damping ratio (dimensionless).

θ Angle (radians unless stated).

τ , τ Torque [N·m].

ω Angular velocity [rad/s].

∇ Gradient operator; ∇f , ∇ · F , ∇× F (see Appendix C).

êx, êy, êz Cartesian unit vectors.



Bibliography and Notes

This compact bibliography favors readable, widely available sources. Each item includes a short
note on scope and style; historical remarks highlight how ideas entered the canon.

Introductory and Bridge Texts
• D. Morin, Introduction to Classical Mechanics. Problem‑driven, witty, with careful

solutions. Excellent for building intuition through practice.

• A. P. French, Newtonian Mechanics. Clear prose and physical insight; a classic
bridge between conceptual understanding and calculation.

• R. Feynman, The Feynman Lectures on Physics, Vol. I. Big‑picture viewpoints
and crisp derivations; especially good for energy and conservation ideas.

Standard Undergraduate Texts
• D. Kleppner and R. Kolenkow, An Introduction to Mechanics. Thorough, with

challenging problems; a common reference for momentum and rotation.

• J. R. Taylor, Classical Mechanics. Gentle exposition with modern notation; accessi-
ble treatments of oscillations and central forces.

Historical Sources (Short Remarks)
• Galileo Galilei, early kinematics (inclined planes) established constant‑acceleration mo-

tion and the decomposition of trajectories.

• Isaac Newton, Philosophiæ Naturalis Principia Mathematica. Unified terrestrial
and celestial motion; Newton’s laws and the inverse‑square gravitation law.

• Leonhard Euler. Formalized dynamics and introduced variational and analytical meth-
ods that underpin modern mechanics and numerics.
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